
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Fine-Grained Connections Between Exponential and Polynomial Time

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Stefan Schneider

Committee in charge:

Professor Ramamohan Paturi, Chair
Professor Sanjoy Dasgupta
Professor Massimo Franceschetti
Professor Russell Impagliazzo
Professor Shachar Lovett

2017



Copyright

Stefan Schneider, 2017

All rights reserved.



The Dissertation of Stefan Schneider is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Fine-Grained Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Exponential Time Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Fine-Grained Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Sparsification Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Orthogonal Vectors and SETH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 SETH-hardness in P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Other Hardness Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 3-Sum Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8.2 APSP Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.3 Min-Plus Convolution Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Lower Bounds from Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Depth Two Threshold Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Notation and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Results and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Vector Domination Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Fan-In Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Generalization to Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Generalization to Symmetric Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 The Algorithm as a Zero-Sum Game . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



Chapter 4 Stable Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Finding Stable Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Small Set of Attributes and Weights . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 One-Sided Real Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Strategic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Real Attributes and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Boolean Attributes and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conditional Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.2 Finding Stable Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Verifying Stable Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.4 Checking a Stable Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Other Succinct Preference Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6.1 One Dimensional Single-Peaked Preferences . . . . . . . . . . . . . . . . 99
4.6.2 Geometric Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.3 Strategic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 5 One-Dimensional Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 111
5.1 The Least-Weight Subsequence (LWS) Problem . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Succinct LWS instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1.2 Contributions and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.1 Succinct LWS Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Core Problems and Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.3 Intermediate Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Static LWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Low Rank LWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 Coin Change and Knapsack Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.6 Chain LWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.7 Near-linear time algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7.1 Longest Increasing Subsequence . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.7.2 Unbounded Subset Sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.7.3 Concave LWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.8 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 6 Fine-Grained Non-Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

v



6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4 What if NSETH is false? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5 The nondeterministic time complexity of problems in P . . . . . . . . . . . . . . 170

6.5.1 Maximum Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.2 Hitting Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5.3 Min-Cost Maximum Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5.4 Maximum Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5.5 3-SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.5.6 All-pairs shortest paths and related problems . . . . . . . . . . . . . . . . 180

6.6 Characterizing the quantifier structure of SETH-hard graph problems . . 183
6.7 Consequences for verification of solutions . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.8 Conclusions and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Appendix A Dramatis Personae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.1 Satisfiability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.2 Vector Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.3 Least Weight Subsequence Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.4 Graph Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.5 Stable Matching Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.6 Other Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

vi



LIST OF FIGURES

Figure 4.1. A representation of the reduction from maximum inner product to
verifying a stable matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.2. A representation of the reduction from maximum inner product to
checking a stable pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.3. A representation of the reduction from maximum inner product
to checking a stable pair such that a true maximum inner product
instance maps to a false stable pair instance . . . . . . . . . . . . . . . . . . . 98

vii



LIST OF TABLES

Table 4.1. Two-list preferences where no participant receives their top choice
in the stable matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.2. Two-list preferences where a greedy approach will not work . . . . . . 78

Table 4.3. Two-list preferences that can be manipulated . . . . . . . . . . . . . . . . . . . 79

Table 4.4. Single-peaked preferences where no participant receives their top
choice in the stable matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 4.5. Geometric preferences that can be manipulated . . . . . . . . . . . . . . . . . 108

Table 5.1. Summary of our results on LWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 5.2. Near-linear time algorithms following from the proposed framework 119

viii



ACKNOWLEDGEMENTS

I would like to thank my advisor Mohan Paturi whose help was invaluable in

getting me through this program.

I would also like to acknowledge my other co-authors Marco Carmosino, Jiawei

Gao, Russell Impagliazzo, Marvin Künnemann, Shachar Lovett, Ivan Mihajlin, and

Daniel Moeller.

A special thank also to my labmates Marco Carmosino, Jiawei Gao, Ivan Mihajlin,

and Michael Walter.

Chapter 3 is based on material as it appears in the following publications: Russell

Impagliazzo, Ramamohan Paturi, and Stefan Schneider. “A satisfiability algorithm for

sparse depth two threshold circuits.” In Foundations of Computer Science (FOCS), 2013

IEEE 54th Annual Symposium on, pp. 479-488. IEEE, 2013. [84] The author of this

dissertation was a principal author of this publication. Russell Impagliazzo, Shachar

Lovett, Ramamohan Paturi, and Stefan Schneider. “0-1 integer linear programming with

a linear number of constraints.” arXiv preprint arXiv:1401.5512 (2014). [80] The author

of this dissertation was a principal author of this publication. Material from Chapter 3 is

currently in preparation for submission for publication, by Russell Impagliazzo, Shachar

Lovett, Ramamohan Paturi, and Stefan Schneider. The author of this dissertation was a

principal author of this publication. We thank Dominik Scheder and Ryan Williams for

the fruitful discussions on the material in Chapter 3.

Chapter 4 is based on material as it appears in the following publications: Daniel

Moeller, Ramamohan Paturi, and Stefan Schneider. “Subquadratic algorithms for succinct

stable matching.” In International Computer Science Symposium in Russia, pp. 294-308.

Springer International Publishing, 2016. [110] The author of this dissertation was a

principal author of this publication. Marvin Künnemann, Daniel Moeller, Ramamohan

Paturi, and Stefan Schneider. “Subquadratic Algorithms for Succinct Stable Matching.”

ix



arXiv preprint arXiv:1510.06452v5 (2016). [101] The author of this dissertation was a

principal author of this publication. Material from Chapter 4 is currently in submission

for publication, by Marvin Künnemann, Daniel Moeller, Ramamohan Paturi, and Stefan

Schneider. The author of this dissertation was a principal author of this publication. We

would like to thank Russell Impagliazzo, Vijay Vazirani, and the anonymous reviewers

for helpful discussions and comments on the material in Chapter 4.

Chapter 5 is based on material as it appears in the following publications: Marvin

Künnemann, Ramamohan Paturi, and Stefan Schneider. “On the Fine-grained Complexity

of One-Dimensional Dynamic Programming”. To appear in the International Colloquium

on Automata, Languages, and Programming, 2017. The author of this dissertation was a

principal author of this publication. We would like to thank Karl Bringmann and Russell

Impagliazzo for helpful discussions and comments on the material in Chapter 5.

Chapter 6 is based on material as it appears in the following publications: Marco

L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and

Stefan Schneider. “Nondeterministic extensions of the strong exponential time hypothesis

and consequences for non-reducibility.” In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science, pp. 261-270. ACM, 2016. [36] The author

of this dissertation was a principal author of this publication. Material from Chapter 6 is

currently in preparation for submission for publication, by Marco L. Carmosino, Jiawei

Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. The

author of this dissertation was a principal author of this publication. We would like

to thank Amir Abboud, Karl Bringmann, Bart Jansen, Sebastian Krinninger, Virginia

Vassilevska Williams, Ryan Williams and the anonymous reviewers for many helpful

comments on the material in this Chapter 6.

x



VITA

2009 Bachelor of Science, Eidgenössisch Technische Hochschule Zürich

2010 Master of Science, Eidgenössisch Technische Hochschule Zürich

2017 Doctor of Philosophy, University of California, San Diego

xi



ABSTRACT OF THE DISSERTATION

Fine-Grained Connections Between Exponential and Polynomial Time

by

Stefan Schneider

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Ramamohan Paturi, Chair

This dissertation presents several results in fine-grained complexity. Fine-grained

complexity aims at extending traditional complexity theory by making more precise, and

fine-grained, statements on the complexity of problems in various resources, including

time and space. In doing so, fine-grained complexity distinguishes between false equiva-

lences, such as the equivalence of all NP-complete problems, while also exploring the

connections between traditionally separate realms, such as polynomial and exponential

time.

This dissertation takes a fine-grained view on computational problems from a

xii



range of fields, including geometry, biology, computational complexity, economics and

graph theory.

We study the relationship between the satisfiability problem on threshold circuits

and a geometric problem, giving the first non-trivial algorithms for both. From economics,

we study the stable matching problem, giving both upper and lower bounds on the

problem. We also take a fine-grained view on the power of dynamic programming,

again proving both upper and lower bound, as well as relating dynamic programming to

other algorithmic paradigms in a fine-grained manner. Finally, we study the relationship

between several problems central to the field of fine-grained complexity, including

satisfiability, 3-sum and the all-pairs shortest path problem, giving the first fine-grained

non-reducibility results.

xiii



Chapter 1

Introduction

One of the main goals of computational complexity theory is to distinguish

between computational problems that are feasible or efficiently solvable, and those that

are not.

In the early 1960’s, the seminal paper “On the Computational Complexity of

Algorithms” by Hartmanis and Stearns [73] laid the foundation of modern complexity

theory, including the definitions of time and space complexity. Already around the same

time, both Cobham [46] and Edmonds [56] suggested that a “good” algorithm is one that

has a time complexity that is polynomial in the size of the input. The idea of equating

the complexity class P with the class of feasible problems has therefore been as old

as modern complexity theory. Inherent in this early work is a path to showing that a

problem is feasible; an algorithm that can be proven to require polynomial time on any

input places the computational problem into the set of feasible problems.

On the other side of coin, we need a path to showing the infeasibility of a problem.

Cook [47] and Levin [102] provided this tool with the definition of NP-hardness. If a

problem can be shown to be NP-hard, then a polynomial time algorithm for that problem

would have grave and extremely wide-ranging consequences. In particular, it would mean

P = NP and a very large class of problems, including almost any problem we encounter

in real world applications, would have efficient algorithms. At least on an intuitive level,

1



2

that seems very unlikely.

The theory of NP-hardness has been a success story of complexity theory, with a

large number of problems that have been shown to be NP-hard, starting with a compilation

of 21 problems by Karp [90]. The success of the theory of NP-hardness is partly due to

its appeal as a separator of feasible and unfeasible problems. In turn, it reinforced the

idea of equating efficiency with polynomial time.

NP-hardness is built around the idea of using reductions as a tool to argue about

the complexity of computational problems. We will use this idea in a refined form as a

core theme throughout this dissertation.

One of the problems with NP-hardness is that proving that a problem is NP-hard

does not actually prove that the problem cannot be solved in polynomial time. The

question whether P = NP is unsolved to this day and considered one of, if not the most

important open question of complexity theory and computer science as a whole. A proof

that a problem is NP-hard is therefore a conditional lower bound; under the condition

that P 6= NP we can conclude that NP-hard problems cannot be solved in polynomial

time.

The other issue is that both P and the class of NP-hard problems contain problems

that are very different from each other. The complexity class P encompasses both

problems with O(n) time algorithms and problems with O(n100) time algorithms. Apart

from time complexity, problems may also differ widely in other measures, such as space

and parallel complexity. The notion of feasibility may also depend on the problem

domain. For example, one of the most fundamental computational tasks in bioinformatics

is to compare two strings of DNA. The human genome consists of approximately three

billion base pairs. A problem size in this order of magnitude does not allow for quadratic

time algorithms and only linear time algorithms can truly be considered feasible in that

context. On the other hand, in some domains the typical sizes of instances may be much



3

smaller, and even larger exponents are feasible. Similarly, NP-hard problems vary widely

both in time complexity and other measures such as approximability. To give just a few

examples, GraphColoring can be solved in time Õ(2n) [26], 3-sat in time Õ(1.308n) [76]

and PlanarSteinerTree in time 2Õ(n2/3) [119]. NP-hardness is also not necessarily a sign

of infeasibility in practice. The CNF-sat problem is NP-hard, yet SAT-solvers have been

used in practice to solve real-world problems in fields such as artificial intelligence [91],

computational biology [104], and many others. See [25] for an extensive treatment on

SAT-solvers in practice.

Fine-grained complexity aims to go beyond traditional complexity theory and

distinguish between problems, both inside P and the class of NP-hard problem by

determining their exact complexity in different measures, including their relationship

with other problems. Fine-grained complexity is built on refinements of the techniques

discussed above, namely reductions and conditional lower bounds.

Polynomial-time reductions are, by definition, not sufficient to distinguish be-

tween problems in P or between NP-complete problems, as they do not preserve the exact

time complexity of problems. Instead, we build fine-grained complexity around a more

restrictive notion of reduction. Fine-grained reductions have the additional property that

they preserve the time complexity with respect to specific time bounds. By establishing a

web of fine-grained reductions among problems we can argue about the relative hardness

of problems with respect to time complexity.

In order to translate fine-grained reductions into statments on lower bounds,

we introduce conjectures that act as anchors. Similar as before, the previously used

conjecture of P 6= NP proves to be insufficient to reason at a fine-grained level. We

consider even stronger (and therefore less believable) assumptions than P 6= NP. Two of

the main conjectures used in fine-grained complexity, the Exponential Time Hypothesis

(ETH) and the Strong Exponential Time Hypothesis (SETH) [82] are stronger versions



4

P 6= NP in a direct sense. If either of the exponential time hypotheses is true, then

P 6= NP. We also use other conjectures, such as the 3-sum conjecture and the APSP

conjecture which are not immediately related to P versus NP, but that provide fine-grained

assumptions about specific problems.

In exchange for stronger assumptions, we are able to give more fine-grained

conditional lower bounds. In particular we try to find the optimal k, such that the problem

can be solved in time Õ(nk), for problems in P, or Õ(kn) for NP-hard problems where

n is a size parameter. We reason on a more fine-grained level than is possible using the

theory of NP-hardness, but it is also coarse-grained in the sense that it we do not argue

about subpolynomial factors for problems in P or subexponential factors for problems in

NP, which is captured by the Õ(·) notation, that suppresses such factors.

The fine-grained definition of feasibility and hardness is typically bound to

specific natural time complexities for different problems. For example, we ask the

question of which problems are hard at time n2 or 2n. To do this we associate problems

to a nominal or conjectured time bound that is often given by a relatively simple and

generic algorithm. For example, for satisfiability problems on restricted circuit classes

on n variables the nominal time bound is typically 2n, matched by a simple brute-force

algorithm. A focus of fine-grained complexity is then the question of which circuit

classes allow for satisfiability algorithms faster than 2n. Interestingly, this does not lead

to independent questions of hardness at different nominal time bounds. Throughout this

dissertation, we extensively use connections between problems at different nominal time

bounds, connecting the hardness of problems, as well as exploiting the same connections

to prove upper bounds for problems with one time bound from upper bounds for problems

at other time bounds. In particular, we show that easy problems in the polynomial world

have a lot in common with easy problems in the exponential world, while hard problems

in the polynomial world have a lot in common with hard problems in the exponential



5

world. With this classification, both problems in P and NP-hard problems can be either

hard or easy.

Fine-grained complexity is inherently problem-centric. Problem-centric complex-

ity aims to understand the complexity of specific, independently motivated, problems.

This approach differs from the more traditional resource-centric view, which aims to

classify problems based on the resources available (e.g. polynomial time). To some

degree, the problem-centric approach is a product of the incomplete picture we currently

have. Other than NP-complete problems, which all reduce to each other, we have a

messy network of fine-grained reductions, with few equivalences. On the other hand,

the problem-centric approach has some advantages. It keeps the area of fine-grained

complexity more directly related to the long history of each of the problems we discuss,

and it avoids hiding results on specific problems behind layers of abstraction.

With the idea of fine-grained complexity in place, a number of research directions

immediately become apparent. The first one is exploring the type of lower bounds

that we can infer from our new set of conjectures and hypotheses. In this disserta-

tion we establish lower bounds, mainly based on SETH, for a wide range of problems

such as VectorDomination, variants of the StableMatching problem, and instances of

the least-weight subsequence problem (LWS). The second direction focuses on upper

bounds. From an algorithmic point of view, the idea of improving algorithms in more

fine-grained terms is very natural, but fine-grained complexity is a useful tool in iden-

tifying particularly interesting computational problems, although all of the problems

discussed in this dissertation are already interesting independently. In particular, this

dissertation discusses algorithm for the satisfiability problem on depth two threshold

circuits, VectorDomination, StableMatching, and LWS. The third direction explores

meta-questions that arise in the framework of fine-grained complexity. We study the

limits of fine-grained complexity by discussing non-reducibility results that prove (con-



6

ditionally) that certain problems cannot be shown to be hard under SETH, even though

they are suspected to not allow efficient algorithms. This is particularly interesting as

this shines light on the relationship of various conjectures that fine-grained complexity is

based on.



Chapter 2

Fine-Grained Complexity

2.1 Notation

We use Õ to suppress subpolynomial factors if the bound is polynomial and

subexponential factors if the bound is exponential. Throughout the dissertation, we use

ω to denote the matrix multiplication exponent. For vectors a, we use ai to denote the ith

component. For two vectors a,b, 〈a,b〉 denotes the inner product. We use [i] to denote

the range of integers {1, . . . , i} and [i, j] to denote the range {i, . . . , j}. All logarithms are

base 2 unless noted otherwise. Other notational conventions only used in certain chapters

are introduced there.

2.2 Satisfiability

We begin our discussion of fine-grained complexity by looking at a class of

problems that are central both to traditional and fine-grained complexity.

The satisfiability problem is an example of a meta-problem, a computational

problem that where the input is an algorithm. Satisfiability is therefore a natural candidate

to try to understand the complexity of this problem. It is also the first problem proved to

be NP-complete [47, 102].

In its most general form P/Poly-sat, the input is a Boolean circuit on n variables

7



8

and poly(n) size and the question is if there is a Boolean input such that the circuit

outputs 1. The brute-force algorithm evaluates the circuit on all 2n inputs and runs in

time Õ(2n). An immediate question is if we can improve on the time complexity of

this problem. The theory of NP-completeness gives a conditional lower bound here: If

P 6= NP, then the time complexity cannot be improved to poly(n). A more fine-grained

question is if we can improve the time bound to 2(1−s)n for some constant s > 0. We call

s the savings of such an algorithm. The goal of finding algorithms with constant saving is

more promising, at least when we consider the satisfiability problem on restricted circuit

classes.

The C -sat problem is defined for any circuit class C ⊆ P/Poly. The input is

a circuit of class C and the problem is to determine if there is an input such that the

circuit outputs 1. The most studied instance of C -sat is CNF-sat, where C is a formula

in conjunctive normal form (CNF).

Given a variable set V , let the set V = {v | v ∈V} be the set of negative literals

and V ∪V be the set of literals. A clause is a disjunction of literals, where we call the

number of literals in a clause the clause width. Finally, a CNF, or (AND◦OR)-circuit,

is a conjunction of clauses. If the clause width is at most k, then the formula is called a

k-CNF. The formula

(x1∨ x2∨ x3)∧ (x1∨ x3∨ x4)∧ (x2∨ x3) (2.1)

is an example for a 3-CNF on variable set V = {x1,x2,x3,x4}.

The k-sat problem is to decide satisfiability of k-CNF formulas. The problem is

NP-complete for k ≥ 3. The first algorithm with constant savings if k is constant is due

to Monien and Speckenmeyer [111]. Later several algorithms improved on the savings,

for example [118, 117, 130, 76].



9

If we do not restrict the the clause width, then Schuler’s algorithm [131] for

CNF-sat runs in time 2(1−Ω(n/m))n, where m is the number of clauses. This gives an

algorithm with constant savings if m = O(n).

For more general circuit classes, not many results for constant savings are known.

Santhanam [128] gives an algorithm with constant savings for DeMorgan-sat, the satisfi-

ability problem on linear sized formulas over AND and OR with fan-in 2. There is an

algorithm with constant savings for AC0-sat [81], where the circuits are constant-depth

circuits over (unbounded fan-in) AND and OR gates. For ACC0-sat, where we also allow

MOD6 gates, Williams [147] gives an algorithm with subconstant savings.

For the max-2-sat problem, where the question is if it is possible to satisfy at least

k clauses of a 2-CNF, Williams [142] gives an algorithm with constant savings, while for

max-3-sat, nothing is known. For the max-sat problem, where we have no restriction on

the clause width, Dantsin and Wolpert [51] give an algorithm with constant savings if the

number of clauses is linear. The currently fastest algorithm for max-sat is due to Chen

an Santhanam [42].

In Chapter 3 we give satisfiability algorithm with constant savings for a number

of circuit classes that contain threshold gates. In particular, we give algorithms for

SparseDepthTwoThr-sat and SymFormula-sat, if the number of wires is linear, and

0-1-ILP if the number of gates is linear.

2.3 Exponential Time Hypotheses

In order to prove lower bounds that are more fine-grained than the theory of

NP-completeness can provide, a natural approach is to condition on stronger assumptions

than P 6= NP. Two such statements are the Exponential Time Hypothesis (ETH) and the

Strong Exponential Time Hypothesis (SETH) defined by Impagliazzo and Paturi [82].



10

Definition 2.3.1 (Exponential Time Hypothesis (ETH)). The 3-sat problem on n vari-

ables requires time Ω(2εn) for some ε > 0.

Definition 2.3.2 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0, there

is an k such that k-sat on n variables requires time Ω

(
2(1−ε)n

)
.

SETH implies ETH, which in turn implies P 6= NP. While the second implica-

tion is a direct consequence of the NP-completeness of 3-sat, the first implication is a

consequence of the sparsification lemma [85, 34]. We discuss the sparsification lemma

in Section 2.5.

Both ETH and SETH can be defined with respect to deterministic or randomized

algorithms. We will generally use the hypotheses in their randomized variants, which

allows us to show conditional lower bounds on randomized algorithms. In rare cases

where we consider ETH and SETH in deterministic variants we point that out explicitly

(for example Section 2.9).

We do not know if either ETH or SETH are true. They therefore need to be

looked at in the context of how useful they are as a tool in proving interesting results, as

well as if they are likely to be true.

In terms of usefulness, both ETH and SETH have been successfully used for

conditional lower bounds, both for NP-complete problems and problems in P. These

lower bounds come in the form of ETH-hardness or SETH-hardness. A problem is

(S)ETH-hard at some time bound T , if improving the existence of an algorithm sig-

nificantly faster than T implies that ETH or SETH respectively are false. Section 2.4

formalizes this notion and contains a discussion of what constitutes a significant improve-

ment. Sections 2.6 and 2.7 outline some of the previously known key results regarding

SETH-hardness while for all parts of this dissertation the concept of SETH-hardness and

conditional lower bounds in general play an important part.



11

In terms of likeliness to be true, the main argument is mostly a historical one. The

k-sat problem has a long history of attempts at fast algorithms, none of which resulted in

algorithms fast enough to contradict ETH or SETH. Likewise, the network of SETH-hard

problems contains a large number of problems, each with its own long history of attempts

at finding fast algorithms. The fine-grained complexity lens that connects them is a fairly

new development, so these problems have been studied by many disjoint communities

over a significant amount of time. Many of these developments have resulted in implicit

or explicit conjectures on lower bounds, that are now unified under the umbrella of

SETH.

Another dimension are consequences if ETH or SETH are false. Section 2.9

outlines some results on how fast satisfiability algorithms imply circuit lower bounds. In

particular, if SETH is false, then the fast algorithm for k-sat implies a number of circuit

lower bounds that have been open for a long time and are considered hard to achieve,

potentially requiring completely new techniques.

For the purpose of this dissertation we mostly concentrate on SETH.

One aspect of the conditional lower bounds based on SETH and the connection to

circuit lower bounds that is particularly interesting is that we can now divide up the world

into two possible scenarios. If SETH is true, we get lower bounds in various domains

including geometry, economics and computational biology. On the other hand, if SETH

is false we get new results in circuit complexity. This property is not shared by other

popular conjectures that imply conditional lower bounds, such as the 3-sum conjecture

and the APSP conjecture (see Section 2.8).

2.4 Fine-Grained Reductions

The key tool for showing conditional lower bounds are reductions. The theory

of NP-completeness is built around polynomial time reductions. In order to show that



12

a problem is NP-complete, it is sufficient to give a polynomial time reduction from a

known NP-complete problem.

For fine-grained complexity polynomial time reductions are not sufficient. In fact,

the time bounds of the known algorithms for NP-complete problems may differ greatly.

To give just a few examples, GraphColoring can be solved in time Õ(2n) [26], 3-sat in

time Õ(1.308n) [76] and PlanarSteinerTree in time 2Õ(n2/3
[119].

We define fine-grained reductions with the motivation to control the exact com-

plexity. For this purpose, we consider languages together with their natural or conjectured

complexities. We use the pair (L,T ) to denote a language L together with its time com-

plexity T . Intuitively, if (L1,T1) fine-grained reduces to (L2,T2), then any constant

savings in the exponent of the time complexity of L2 implies some constant savings in

the exponent of the time complexity of L1.

Definition 2.4.1 (Fine-Grained Reductions (≤FGR)). Let L1 and L2 be languages, and let

T1 and T2 be time bounds. We say that (L1,T1) fine-grained reduces to (L2,T2) (denoted

(L1,T1) ≤FGR (L2,T2)) if for all ε > 0, there is a δ > 0 and a deterministic Turing

reduction M L2 from L1 to L2 satisfying the following conditions.

(a) The time complexity of the Turing reduction without counting the oracle calls is

bounded by T 1−δ

1 .

TIME[M ]≤ T 1−δ

1 (2.2)

(b) Let Q̃(M ,x) denote the set of queries made by M to the oracle on an input x of

length n. The query lengths obey the following time bound.

∑
q∈Q̃(M ,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

If a fine-grained reduction exists from (L1,T1) to (L2,T2), algorithmic savings for



13

L2 can be transferred to L1. The definition gives us exactly what is needed to establish

savings for L1 by simulating the machine M L2 using the faster algorithm for L2. The

role of each parameter in the definition of fine-grained reducibility makes this clear.

T1: The presumed time to decide L1, usually given by a trivial algorithm.

T2: The presumed time to decide L2.

ε: Any savings (assumed or real) on computing L2.

δ : The savings (as a function of ε) that can be obtained over T1 when deciding L1 by

reducing to L2.

It is easy to verify that fine-grained reductions, just like polynomial time reduc-

tions, can be composed.

Lemma 2.4.1 (Fine-grained reductions are closed under composition). Let (A,TA)≤FGR

(B,TB) and (B,TB)≤FGR (C,TC). It then follows (A,TA)≤FGR (C,TC).

Similarly, we define randomized fine-grained reductions.

Definition 2.4.2 (Randomized Fine-Grained Reductions (≤s
rFGR)). Exactly as in the

deterministic case, except the Turing reduction from (L1,T1) to (L2,T2) is a probabilistic

machine with some two-sided error bound

Pr[M L2(x) = L1(x)]≥ s (2.3)

for some s.

We denote a randomized fine grained reduction from L1 to L2 with error bound

s by (L1,T1) ≤s
rFGR (L2,T2). Generally, we will use s = 2/3, so we denote ≤2/3

rFGR by

≤rFGR.



14

Similar to deterministic reductions, randomized reductions transfer savings in the

randomized complexity for L2 to L1.

We will have occasion to consider FGRs between function problems. This poses

the problem that, in certain situations, just writing down the solution to a problem could

exceed the time bound and wipe out fine-grained savings. In the deterministic case, we

cope with this by adding another restriction to the definition of a fine-grained reduction:

Definition 2.4.3 (Fine-Grained Reductions for Functions (≤ f FGR)). Exactly as in the

decision deterministic case, except that the Turing reduction M f2 is to a function problem

f2 and is expected to produce a functional output. In addition to the existing resource

bounds, we bound the size of answers given by the f2 oracle.

∑
q∈Q̃(M ,x)

| f2(q)| ≤ (T1(n))1−δ (2.4)

The bound on the query answer size ensures that fine-grained reductions between

functional problems also compose.

We are now able to define SETH-hardness formally.

Definition 2.4.4 (SETH-hardness). A language L is SETH-hard at time T , if for some

function k(n) = ω(1) we have (k(n)-sat,2n)≤rFGR (L,T ).

Note that we allow for randomized fine-grained reductions as we define SETH

with respect to randomized algorithms. If a problem L is SETH-hard and the fine-

grained reduction from k-sat is deterministic, we say L is SETH-hard under deterministic

reductions.

To state the definition of SETH-hardness less formally, a problem L is SETH-hard

at time T , if the existence of and algorithm for L with time T 1−ε for any ε > 0 implies

that SETH is false.



15

We would like to point out that the definition of fine-grained reductions above

captures the reductions necessary to show SETH-hardness. For ETH-hardness, we can

relax the requirements on the reductions. We will not define reductions that preserve

subexponential time formally, but note that there is a concept of ETH-hardness that

provides conditional lower bounds on problems if ETH holds.

2.5 Sparsification Lemma

The first fine-grained reduction that we discuss in some detail is the sparsifica-

tion lemma [85, 34]. The sparsification lemma reduces the satisfiability problem of a

k-CNF formula on n variables and any number of clauses to the the disjunction of a

subexponential number of sparse k-CNF formulas, that have only f (k)n clauses for some

function f . The sparsification lemma is a fine-grained reduction from the k-sat problem,

parametrized by k, and the CNF-sat problem, where the input is a CNF with cn clauses,

and the time complexity is parametrized by c.

Formally the sparsification lemma is a follows.

Lemma 2.5.1 (Sparsification Lemma [85, 34]). Given a k-CNF F , and for every ε > 0

and k, there is a constant c = kO(k) such that we can construct a set of k-CNF F1, . . . ,Ft

with

• t < 2εn

• Fi has at most cn clauses for all i

• F is satisfiable if and only if at least one formula Fi is satisfiable

Furthermore the construction takes time poly(n)2εn.

Using the sparsification lemma we can conclude that the CNF-sat problem is

SETH-hard at time 2n. Due to Schuler’s algorithm [131], which provides a fine-grained



16

reduction from CNF-sat to k-sat, we can conclude something stronger, namely that SETH

holds if and only if CNF-sat requires time 2n.

Lemma 2.5.2. SETH holds if and only if for any ε > 0, there is a c such that solving the

CNF-sat problem on m = cn clauses requires time Ω(n2−ε).

2.6 Orthogonal Vectors and SETH

For the remaining sections of this chapter we will concentrate on fine-grained

complexity inside P.

For a lot of problems in P that are SETH-hard, the proof is a fine-grained reduction

from OrthogonalVectors. The SETH-hardness of OrthogonalVectors, first proved by

Williams [142], is therefore central to the fine-grained complexity inside P.

The OrthogonalVectors problem is defined as follows:

Problem 1 (OrthogonalVectors). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d , deter-

mine if there is i, j ∈ [n] satisfying 〈ai,b j〉= 0.

The OrthogonalVectors problem is a natural problem, both because of its geomet-

ric interpretation, but also if the input is interpreted as sets. In the language of set theory,

the goal is to decide if there are two sets such that the intersection is empty.

Lemma 2.6.1 ([142]). Assuming SETH, for any ε > 0, there is a c such that solving

OrthogonalVectors problem on d = c logn dimensions requires time Ω(n2−ε).

Proof. The reduction is from CNF-sat (see Lemma 2.5.2). Let F be a formula in

constraint normal form with d = cn clauses. We reduce the satisfiability problem for

F to OrthogonalVectors using a technique called split and list. Divide the variable set

into two sets S,T of size n
2 and for each set consider all N = 2n/2 assignments to the

variables in the set. For every assignment we construct a d-dimensional vector where the



17

ith position is 1 if and only if the assignment does not satisfy the ith clause of F . Let U

be the set of vectors corresponding to the assignments to S and let V be the set of vectors

corresponding to T . A pair u ∈U , v ∈V is orthogonal if and only if the corresponding

assignment satisfies all clauses. An algorithm for the OrthogonalVectors problem on

d = cn = 2c logN dimensions and in time O(N2−ε) = O(2(1−ε/2)n) would contradict

SETH. Hence assuming SETH, for every ε > 0 there is a c such that the Boolean vector

orthogonality problem with d = c logN requires time Ω(N2−ε).

This reduction also trivially generalizes to k-OrthogonalVectors, simply partition

the variable set into k parts instead of two.

Apart from the conditional hardness of OrthogonalVectors, this reduction also

has consequences for algorithms. The fastest known algorithm for OrthogonalVectors

on d = c logn dimensions has a time complexity of n2−1/O(logc) [7]. Applying this

algorithm with the reduction we get an algorithm for CNF-sat on d = cn clauses with

time n2−1/O(logc). This is particularly interesting as this time bound matches the best

known algorithm for CNF-sat (up to constants in the exponent) due to Schuler [131].

Schuler’s algorithm, at its heart, is a fine-grained reduction to k-sat. This draws a very

interesting picture of the relationship between k-sat, CNF-sat and OrthogonalVectors.

Note that in general, our definition of fine-grained reduction does not preserve the exact

savings of the algorithm, but in this case we do have such a relationship. The fastest

algorithms for k-sat runs in time 2(1−1/O(k))n [118, 117, 130]. The same time bound can

be achieved (up to constants in the exponent) by reducing k-sat to CNF-sat using the

sparsification lemma (see Section 2.5) and then reducing to OrthogonalVectors. Similarly,

CNF-sat can either be reduced to k-sat or OrthogonalVectors, achieving the same time

bound.

While we know a fine-grained reduction from satisfiability to OrthogonalVectors,



18

the other direction is not known. As far as we know, it is possible that SETH is false, but

OrthogonalVectors requires quadratic time for large dimensions. A fine-grained reduction

from OrthogonalVectors to k-sat would show that SETH and the OrthogonalVectors

conjecture are equivalent. In fact, we do not know of any (nontrivial) fine-grained

reductions from any problem with time T to any problem with time T ′ where T ′ = ω(T ).

In other words, all our fine-grained reductions are from hard to easy problems. Note that

this phenomena is for the time complexity as a function of the total input size. Problems

in a number of domains are often parametrized by other measures, such as graphs by

the number of nodes (where the input size can be quadratic in the number of nodes), or

circuits by the number of variables. This observation is at first glance counter-intuitive,

but any fine-grained reduction from an easy problem to a hard problem would in some

sense need to compress the input. It is an open question how to formalize this intuition

and how to argue non-reducibility from OrthogonalVectors to CNF-sat.

The split and list technique has a number of applications, both for upper and lower

bounds. On the upper bound side, a classical example is the Õ(2n/2) time algorithm for

SubsetSum, where we divide the input into two subsets of equal size and compute the

sums of all 2 ·2n/2 subsets of these sets. The problem is then to find two sums, one from

each set of size 2n/2, such that they sum to the target value. This can be done in Õ(2n/2),

i.e. linear in the number of sums. We can think of this algorithm as a fine-grained

reduction from SubsetSum to Table-2-sum, combined with the O(n) time algorithm for

Table-2-sum. Another example of an upper bound using split and list is in Chapter 3,

where we reduce the 0-1 integer linear programming problem (0-1-ILP), a generalization

of CNF-sat to the VectorDomination problem, a generalization of OrthogonalVectors.

This allows us the get a nontrivial algorithm for 0-1-ILP and DepthTwoThr-sat.

For lower bounds, all known fine-grained reductions from problems in EXP

to problems in P are split and list in some form. Apart from SETH-hardness proofs



19

that use OrthogonalVectors as an intermediate steps, this includes also the fine-grained

reductions from CNF-sat to k-DominatingSet [123], from MaxCut to k-Clique [142], and

from BranchingProgram-sat to LongestCommonSubsequence and EditDistance [4].

2.7 SETH-hardness in P

Apart from OrthogonalVectors, there is a large and growing number of SETH-

hard problems inside P. Most of these problems are SETH-hard at time n2, with some

problems at time nk for some parameter k (e.g. k-OrthogonalVectors). This section gives

a very brief overview over these results. For a more comprehensive overview, see [149].

A first cluster of results are vector problems, in particular variants and gen-

eralizations of OrthogonalVectors. An example of a SETH-hard vector problem is

the SetContainment problem, where the input are two sets A,B of Boolean vectors,

similar to the input for OrthogonalVectors. Other than OrthogonalVectors, we con-

sider the vectors as sets (where a 1 at position i represents the fact that i is in the

set) and the problem is to find two sets a ∈ A,b ∈ B such that a ⊆ b. We can reduce

OrthogonalVectors to SetContainment by negating the vectors in B component-wise. In

fact, the OrthogonalVectors problem and the SetContainment problem are subquadratic

equivalent. Another vector problem that with a trivial fine-grained reduction from

OrthogonalVectors is MinInnProd, where the goal is to find the pair of Boolean vectors

that minimizes the inner product.

The MaxInnProd problem, where the goal is to find the maximum inner product

is also SETH-hard. We use the MaxInnProd problem as a starting point for fine-grained

reductions in Chapter 4. The problem is defined as follows.

Problem 2 (MaxInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d and k ∈ nats,

determine if there is i, j ∈ [n] satisfying 〈ai,b j〉 ≥ k.



20

The fine-grained reduction is from SetContainment and is given by [15]: Partition

the set of vectors A into sets Ai for 0≤ i≤ d where Ai contains all vectors with Hamming

weight i (i.e. sets with size i). Observe that a vector b ∈ B represents a set that contains

a ∈ Ai if and only if 〈a,b〉 = i. Thus A and B have two sets such that one contains the

other if and only if there is an i such that Ai and B have a pair of vectors with inner

product at least i.

Other problems that are trivially SETH-hard include integer variants of the

MinInnProd problem and the MaxInnProd problem, as well as the VectorDomination

problem, where the goal is to find vectors a, b such that ai ≤ bi for all 1≤ i≤ d. The fine-

grained reduction from OrthogonalVectors to the Boolean variant of VectorDomination

is similar to the reduction from OrthogonalVectors to the SetContainment problem.

Gao, Impagliazzo, Kolokolova and Williams [67] extend the results on (Boolean)

vector problems to their sparse variants. Instead of Boolean vectors, the input is given by

a list of indices such that the corresponding entry is 1. Note that this is a more natural

input in some cases like sets. Some reductions, such as the fine-grained reductions

between OrthogonalVectors and SetContainment become nontrivial in the sparse setting,

as complementing a set is an expensive operation if the set is small compared to the uni-

verse. Their main result is that any property that can be expressed as a first-order formula

on graphs has a fine-grained reduction to OrthogonalVectors, hence OrthogonalVectors

is a complete problem for that class. We study first-order properties in the context of

non-reducibility in Chapter 6.

SETH-hardness has been shown for a number of graph properties, most of which

fall into the first-order property umbrella of [67]. Examples include the GraphDiameter-2

problem [29] and the k-DominatingSet problem [123]. k-DominatingSet is a particu-

larly interesting example, as it is one of the few SETH-hard problems in P where the

fine-grained reduction does not use k-OrthogonalVectors as an intermediate step. The



21

reduction is directly from CNF-sat and also uses split and list.

Another class of SETH-hard problems are alignment problems. In an align-

ment problem, the input are two sequences of objects, and the goal is to compute an

alignment, that is crossing-free matching of the objects that maximizes some function.

Examples of SETH-hard alignment problems (at time n2) include FréchetDistance [31],

EditDistance [17] and LongestCommonSubsequence [2, 33].

The results on many alignment problems have been strengthened by a fine-grained

reduction from the BranchingProgram-sat problem [4]. A strongly subquadratic algo-

rithm for EditDistance would imply a satisfiability algorithm for BranchingProgram-sat,

and not just CNF-sat. We can therefore see their result as a strengthening of the hardness

by basing the result on a conjecture that is more likely than SETH. Alternatively, we can

exploit the fact that we do not know any algorithm with superpolynomial improvements

over O(2n) for BranchingProgram-sat. If we conjecture that no such algorithm exists,

then we can conclude that EditDistance and other alignment problems do not have al-

gorithms with arbitrary log-factor improvements, i.e. there is a k such that there is no

O(n2/ logk(n)) algorithm for EditDistance. Note that this is consistent with currently

known upper bounds, which save a factor of log2 n [105]. They also show that such su-

perpolynomial improvements imply circuit lower bounds similar to the results discussed

in Section 2.9.

The dynamic programming formulation of the LongestCommonSubsequence

problem and other alignment problems is perhaps the conceptually simplest example

of a two-dimensional dynamic programming formulation. In the standard formulation,

each entry of an n×n table is computed in constant time. In Chapter 5 we take a look at

examples for one-dimensional dynamic programming.



22

2.8 Other Hardness Conjectures

Apart from SETH, a number of other popular conjectures are used for the purpose

of fine-grained complexity. Similar to SETH, all conjectures below specify a time

bound for a specific problem, and are fine-grained up to subpolynomial factors. The

most popular conjectures other than SETH are the 3-sum-conjecture [61] and the APSP-

conjecture [150]. For a more comprehensive overview, see [149].

By not restricting ourselves to a single conjecture we broaden the power of our

fine-grained approach considerably. As a downside, it seems more likely that at least

one of the conjectures turns out to be false. The conjectures we discuss in this section

are typically independent from each other, according to our current understanding. The

fact that we currently need multiple conjectures to explain the hardness of problems

inside P can be viewed as a limitation of our current techniques. A number of results aim

to address this issue. Abboud, Vassilevska Williams and Yu [6] identify problems that

are hard under the meta-conjecture that at least one of SETH, the 3-sum-conjecture of

the APSP-conjecture is true. In Chapter 6 we give conditional impossibility results for

showing 3-sum and APSP SETH-hard, which implies that the use of multiple conjecture

to explain the hardness of problems might be necessary.

2.8.1 3-Sum Conjecture

The 3-sum problem is defined as follows:

Problem 3 (3-sum). Given n integers a1 . . .an in the range [−W,W ] for some W =

poly(n), the 3-sum problem is the problem of determining if there is 1≤ i, j,k ≤ n such

that ai +a j +ak = 0.

The 3-sum conjecture [61] is that there is no algorithm for the 3-sum problem

with time O(n2−ε) for any ε > 0. Originally, the conjecture was stated as there not



23

being an algorithm with time o(n2). However, Baran, Demaine and Pǎtraşcu [19] give

a O(n2/polylog(n) algorithm for 3-sum on integer inputs. Grønlund and Pettie gave an

algorithm with similar improvements for the 3-sum problem in the real RAM model.

A large class of problems in computational geometry are 3-sum-hard. Examples

include ThreePointsOnALine [61], HoleInUnion [61], and PolygonContainment [20].

Apart from computational geometry, 3-sum-hard problems include diverse problems

such as TriangleEnumeration [122], LocalAlignment [5], as well as a number of dynamic

graph problems [122].

More generally, the k-sum conjecture says that there is no algorithm for k-sum

with time O(nd
k
2e−ε) for any ε > 0.

2.8.2 APSP Conjecture

The All-pairs shortest path problem (APSP) is defined as follows:

Problem 4 (All-Pairs Shortest Path (APSP)). Given an undirected, weighted graph

G = (V,E) with weights w : E → [−W,W ] for some W = poly(|V |), compute for every

pair v1,v2 ∈V , compute the length of the shortest path from v1 to v2.

The APSP conjecture [150] is that there is no algorithm for APSP with time

O(n3−ε) for any ε > 0.

Vassilevska Williams and Williams [150] give a number of problems that are

subcubic equivalent to APSP, including (min,+)-Product, NegativeWeightTriangle,

and SecondShortestPath. Other problems known to be subcubic equivalent include

GraphDiameter and GraphRadius [3].

The fine-grained equivalences with APSP are a feature of the APSP conjecture

not present in the fine-grained complexity based on SETH and 3-sum. While the study of

these conjectures also resulted in some fine-grained equivalences, they are rare and often

trivial examples. Fine-grained equivalences draw a very clear picture of the complexity



24

landscape. Both from a lower and an upper bound perspective, progress on one problem

directly translates to progress to another problem. Note that fine-grained equivalences do

not necessarily imply that the savings are preserved exactly, but it does imply that for

example the APSP conjecture and the NegativeWeightTriangle conjecture are equivalent.

Some problems that are known to be APSP-hard, but not fine-grained equiva-

lent to APSP include ZeroWeightTriangle [139] and dynamic graph problems such as

SingleSourceShortestPath [125].

2.8.3 Min-Plus Convolution Conjecture

The (min,+)-Convolution problem is defined as follows:

Problem 5 ((min,+)-Convolution). Given n-dimensional vectors a = (a0, . . . ,an−1),

b = (b0, . . . ,bn−1) ∈ [−W,W ]n for some W = poly(n), the (min,+)-Convolution a∗b is

defined by

(a∗b)k = min
0≤i, j<n:i+ j=k

ai +b j for all 0≤ k ≤ 2n−2.

The (min,+)-Convolution conjecture is that, for any ε > 0, there is no algorithm

with time O(n2−ε) for (min,+)-Convolution. This problem is of particular interest in the

context of fine-grained complexity as the (min,+)-Convolution conjecture implies both

the 3-sum conjecture [18] and the APSP conjecture [30]. While the (min,+)-Convolution

conjecture has not been studied as extensively as other conjectures, a number of fine-

grained equivalences with (min,+)-Convolution have been established [49]. Chapter 5

discusses an equivalence between (min,+)-Convolution and the CoinChange problem.



25

2.9 Lower Bounds from Algorithms

In this section we give an overview over some results that give a formal connection

between the existence of fast satisfiability algorithm and circuit lower bounds. This

section is adapted from [129].

Williams [143, 147] gives a formal connection between satisfiability algorithms

for a circuit class and lower bounds for the same class. Given a satisfiability algorithm

that improves over brute force by only a superpolynomial amount, he constructs a lower

bound against NEXP (nondeterministic exponential time). Not only is the satisfiability

algorithm used as a black box, the result applies to a large set of natural circuit classes.

By giving a satisfiability algorithm for ACC0, Williams completes an (unconditional)

proof for NEXP 6⊆ ACC0. Since the connection between satisfiability algorithms and

circuit bounds is more general than just ACC0 circuits, this result is a also a possible path

to prove further lower bounds in the future.

Connections between satisfiability algorithms and circuit lower bounds have been

observed on a more informal level before. Techniques such as the satisfiability coding

lemma [117] and the switching lemma [74] are used to derive properties of circuits that

lead to both satisfiability algorithms and lower bounds.

The technique by Williams achieves a similar goal, as the result is both a satisfia-

bility algorithm for ACC0 and a lower bound for the same circuit class. The satisfiability

algorithms relies on properties of the circuit class. However, instead of deriving a cir-

cuit lower bound directly from the same properties, Williams adds another layer of

abstraction. The proof of the circuit lower bound does not depend on the properties of

the circuit directly, but only on the derived satisfiability algorithm. As a consequence

of this abstraction, he is able to formalize a connection between algorithms and lower

bounds. While it is difficult to characterize what properties of circuit classes lead to both



26

satisfiability algorithms and lower bounds, the abstraction allows a quantitative statement

on the required satisfiability algorithm.

In the first paper [143], Williams proves that if there is an algorithm for P/poly-sat

that improves over exhaustive search by a superpolynomial amount, then NEXP 6⊆P/Poly.

The proof is an indirect diagonalization argument. Assuming NEXP⊆ P/Poly and the

existence of a fast satisfiability algorithm for general P/Poly circuits, it gives an algorithm

to solve an arbitrary problem L ∈ NTIME(2n) in nondeterministic time O(2n/ω) for

some superpolynomial ω . As a result, there are no problems in NTIME(2n) that are not in

NTIME(2n/ω), which contradicts the nondeterministic time hierarchy theorem [48, 133].

For a rough outline of the proof, suppose there is a satisfiability algorithm for

general circuits that improves over exhaustive search by a superpolynomial factor and

NEXP ⊆ P/Poly. Then pick an arbitrary problem L in NTIME(2n) and reduce it to

the Succinct-3-sat problem, which is NEXP-complete. The Succinct-3-sat problem is

a variation on 3-sat for exponential formulas. Instead of having the 3-CNF as an direct

input, the input is a polynomial size circuit, such that on input i in binary, the output is the

ith bit of the encoding of a 3-CNF formula. The Succinct-3-sat problem is then to decide

if the implied 3-CNF is satisfiable. By the NEXP-completeness of Succinct-3-sat we can,

given an input x to L of length n, construct a polynomial size circuit C with n+O(logn)

inputs such that on input i in binary, the output is the ith bit of a 3-CNF that is satisfiable

if and only if x ∈ L. The number of variables of this 3-CNF formula is exponential in n.

To test the satisfiability of this circuit without explicitly writing out the 3-CNF for-

mula, we use the idea of a universal witness. Impagliazzo, Kabanets and Wigderson [79]

show that if NEXP ⊆ P/Poly, then for every satisfiable instance of a Succinct-3-sat

problem there is a polynomial size circuit such that on input i in binary, it outputs the

value of the ith variable in a satisfying assignment.

The nondeterministic algorithm proceeds as follows. First nondeterministically



27

guess the universal witness for the given Succinct-3-sat problem. Since the goal is to

give an algorithm that runs in NTIME(2n/ω) the algorithm is free to use nondeterminism

at this point. Let this circuit be called D. From the Succinct-3-sat instance C we can

construct a circuit C′ that takes as input a number i in binary, and outputs the ith clause,

consisting of three variables in binary (requiring n+O(logn) bits each) and three bits

to indicate if the literals are negated. Each of these variables is then given as input to

the circuit D. As a last step, we can check if the values that D assigns to the variables

satisfies the clause.

The circuit D is a universal witness for the 3-CNF formula if and only if the

constructed circuit is unsatisfiable, i.e. there is no input i such that the universal witness

does not give an assignment that satisfies the ith clause. Using the assumed fast algorithm

for circuit satisfiability, we can decide this in time O(2n/ω), resulting in an overall

algorithm in NTIME(2n/ω), contradicting the nondeterministic time hierarchy theorem.

In the second paper [147], Williams refines his result for restricted circuit classes.

For any circuit class C that contains AC0 and is closed under composition, if there is a

satisfiability algorithm for C that improves over exhaustive search by a superpolynomial

amount, then NEXP 6⊆ C . The main part of the proof is ensuring that the circuit con-

structed for the proof is in the class C so that we can apply the supposed algorithm for

C -sat. In particular, the circuit C′ that takes as input a value i and returns the ith clause

is not necessarily in the class C . The key idea to get around this is by guessing and

checking an equivalent C -circuit, and then building the whole circuit using the guessed

component. By giving an algorithm for ACC0-SAT in the same paper he completes the

proof for NEXP 6⊆ ACC0.

These techniques were pushed further to the following circuit classes, which are

not closed under composition [89].

Theorem 2.9.1. For each of the following circuit classes C , if the satisfiability problems



28

for circuits in C can be solved in time 2n/nω(1) then there is a problem f ∈ ENP that is

not solvable by circuits in C :

1. linear-size series-parallel circuits,

2. linear-size log-depth circuits

The key part of the proof is to find reductions from any problem in NTIME[2n] to

Succinct-3-sat, such that the constructed circuit is in the circuit classes above.

The authors of [89] also relate the framework to (deterministic) ETH and SETH.

Note that the failure of ETH or SETH are ultimately statements about the existence of

efficient satisfiability algorithm. Given Williams’ framework it is therefore not surprising

that we can prove circuit lower bounds from them. In particular, we can use any of the

following three assumptions to infer some lower bound for the circuit classes above:

1. The exponential time hypothesis (ETH) is false; i.e., for every ε > 0, 3-sat is in

time 2εn

2. The strong exponential time hypothesis (SETH) is false; i.e., there is a δ < 1 such

that for every k, k-sat is in time 2δn

3. There is α > 0 such that nα -sat is in time 2n−ω(n/ log logn)

The main idea is to use structural decomposition theorems for the circuit classes

above to re-express the circuit as the disjunction of a (relatively) small number of CNF.

Then, run the assumed faster k-sat algorithm on each CNF. The overall formula is

unsatisfiable if and only if all of the CNF formulas are unsatisfiable.

The links between satisfiability algorithms and circuit lower bounds provide an

interesting property of SETH and ETH that are not shared by other popular conjectures

such as the 3-sum conjecture or the APSP conjecture. While all of these conjectures are



29

supported by a long history of unsuccessful attempts to disprove them and fast algorithms

for either of these problems would have immediate consequences, disproving SETH

would also prove lower bounds. As such, we get lower bounds in both possible states of

the world. If SETH is true, all SETH-hard problems become unconditionally hard, while

if SETH is false, we get circuit lower bounds.

In Section 6.4 we will revisit these results with respect to nondeterministic variants

of ETH and SETH.

2.10 Contributions

In this dissertation we discuss contributions to fine-grained complexity that

involve upper bounds for restricted versions of otherwise hard problems, conditional

lower bounds as well as meta-questions on the power of the fine-grained complexity

framework.

In Chapter 3 we give satisfiability algorithms with constant savings for depth-two

threshold circuits with a linear number of wires and related circuit classes. Our main

technique is a fine-grained reduction from the SparseDepthTwoThr-sat problem to the

VectorDomination problem, an extension of the fine-grained reduction from CNF-sat to

OrthogonalVectors. In this chapter, fine-grained complexity plays a dual role. One one

hand, SETH gives limits on when we can expect fast satisfiability algorithms, and the

goal becomes to give fast algorithms for parameters not excluded by SETH. One the

other hand, we use the fine-grained connections between exponential and polynomial

time directly as an algorithmic technique, which highlights the dual use of fine-grained

reductions both as a mean to prove conditional lower bounds as well as to find new

algorithms.

In Chapters 4 and 5 we consider succinct versions of problems that have linear

time algorithms (in the input size). In Chapter 4 we consider the StableMatching problem.



30

In the StableMatching problem, we are computing a matching in an n× n bipartite

graph that respects the preference orders for each node. The problem allows an O(n2)

algorithm [62], but since the input consists of 2n preference lists (i.e. permutations), the

time complexity of this algorithm is in fact linear. We study succinct representations for

the preferences including the attribute, list, or geometric models, and ask the question

if there are subquadratic algorithms for these input models. We show that for these

representations some questions such as finding and verifying stable matchings are SETH-

hard at time n2 where n is the size of the succinct input, while other questions have

strongly subquadratic algorithms.

In Chapter 5 we consider the Least-Weight Subsequence (LWS) problem. In

the LWS problem, we are given a sequence of length n and are looking for the mini-

mum weight subsequence, where the weights are given for each pair of positions in

the original sequence. This problem does have an O(n2) algorithm [77], but again

similar to StableMatching, the input is given as an n by n matrix and the algorithms is

therefore linear in the input size. We study a number of succinct representations, in-

cluding the CoinChange problem and the NestedBoxes problem. We show subquadratic

equivalences between these LWS instantiations and related problems including problems

that are well-studied in the fine-grained complexity context, such as OrthogonalVectors,

VectorDomination and (min,+)-Convolution. We exploit those equivalences both for

new condition lower bounds and for new upper bounds. A key insight of these equiva-

lences is that while the generic algorithm for LWS is very sequential, the subquadratic

equivalent problems are not. These problems therefore isolate the core properties of the

LWS instantiations that explain the subquadratic hardness of the problem, and separate

the hardness from the sequential nature of LWS.

Finally in Chapter 6 we give fine-grained non-reducibility results. We emulate

in a fine-grained way one of the ways to prove that a problem is not NP-complete. In



31

particular, if we assume NP 6= coNP and show that some problem L is in NP∩ coNP,

then L cannot be NP-complete. We consider a fine-grained version of NP 6= coNP which

we call the Nondeterministic Strong Exponential Time Hypothesis (NSETH) and show

that a number of problems are not SETH-hard assuming NSETH. Among these problems

are 3-sum and APSP, the problems the most popular fine-grained conjectures other than

SETH are based on. These non-reducibility results indicate that it might be difficult to

find a unified conjecture that explains the conditional hardness of all problems, and that

the fine-grained picture is messier than the very clean theory of NP-completeness.



Chapter 3

Depth Two Threshold Circuits

In this chapter we give a nontrivial algorithm for the satisfiability problem for

cn-wire threshold circuits of depth two (SparseDepthTwoThr-sat) which is better than

exhaustive search by a factor 2sn where s = 1/cO(c2). For the independently interesting

special case of feasibility of 0-1 integer linear programs (0-1-ILP), we strengthen the

result to s = 1/poly(c), where cn is the number of inequalities. The key idea is to

reduce the satisfiability problem to the VectorDomination problem, the problem of

checking whether there are two vectors in a given collection of vectors such that one

dominates the other component-wise. We give the first subquadratic algorithm for the

VectorDomination problem for O(logn) dimensions.

We extend our result to depth two circuits with symmetric gates where the total

weighted fan-in is at most cn, as well as constant depth formulas.

Satisfiability testing is both a canonical NP-complete problem [47, 102] and one

of the most successful general approaches to solving real-world constraint satisfaction

problems. In particular, optimized CNF-sat heuristics are used to address a variety of

combinatorial search problems successfully in practice, such as circuit and protocol

design verification. The exact complexity of the satisfiability problem is also central

to complexity theory, as demonstrated by Williams [143], who has shown that any

improvement (by even a superpolynomial factor compared to exhaustive search) for the

32



33

satisfiability problem for general circuits implies circuit lower bounds. Furthermore he

has successfully used the connection to prove superpolynomial size bounds for ACC0

circuits using a novel nontrivial satisfiability algorithm for ACC0 circuits, solving a long

standing open problem [147].

This raises the questions: For which circuit models do nontrivial satisfiability

algorithms exist? How does the amount of improvement over exhaustive search relate

to the expressive power of the model (and hence to lower bounds)? Can satisfiability

heuristics for stronger models than CNF be useful for real-world instances?

Both the connection to circuit lower bounds and to heuristic search algorithms

point to threshold circuits as the model to study next. Bounded depth polynomial size

threshold circuits TC0 are the next natural circuit class stronger than ACC0. TC0 is a

powerful bounded depth computational model. It has been shown that basic operations

like addition, multiplication, division, and sorting can be performed by bounded depth

polynomial size threshold circuits [40, 28]. In contrast, unbounded fan-in bounded

depth polynomial size circuits over the standard basis (even when supplemented with

mod p gates for prime p) cannot compute the majority function [28]. However, our

understanding of the limitations of bounded depth threshold circuits is extremely weak.

Exponential lower bounds for such circuits are only known for the special case of depth

two and bounded weight [72]. For larger depth circuits, barely superlinear lower bounds

are known on the number of wires [83].

On the other hand, satisfiability for depth two threshold circuits contains as special

cases some well known problems of both theoretical and practical significance. CNF-sat

is one such special case, since both conjunctions and disjunction are a special case of

threshold gates. max-k-sat, the optimization form of k-CNF satisfiability, is another

special case, since the top threshold gate can count the number of satisfied clauses for

an assignment. Even for max-3-sat, no algorithms with a constant factor savings over



34

exhaustive search are known (although such an algorithm is provided for max-2-sat

in [142]). Another special case is the Boolean version of Integer Linear Programming

(0-1-ILP), a problem that is very useful in expressing optimization problems both in

theory and practice. Testing the feasibility for a 0-1-ILP is equivalent to testing the

satisfiability of a circuit with two levels, the bottom consisting of threshold gates and the

top level being a conjunction. So both theoretical and real-world motivation points us to

trying to understand the satisfiability problem for depth two threshold circuits.

Santhanam [128] gives an algorithm with constant savings for linear size formulas

of AND and OR gates with fan-in two. However, this does not directly give an algorithm

for DepthTwoThr-sat, as converting a linear size threshold circuit into a formula over

AND and OR gates gives quadratic size.

In all of these related problems, a key distinction is between the cases of linear

size and superlinear size circuits. In particular, an algorithm with constant savings for

DepthTwoThr-sat of superlinear size would refute the Strong Exponential Time Hypoth-

esis (SETH) [82], since k-CNF for all k can be reduced (via sparsification lemma [85]) to

superlinear size depth two threshold circuits [34]. However, for CNF-sat and max-sat,

algorithms with constant savings are known when the formula is linear size [131, 51, 42].

So, short of refuting SETH, the best we could hope for is to extend such an improvement

to the linear size DepthTwoThr-sat problem.

In this chapter, we give an algorithm which obtains constant savings in the expo-

nent over exhaustive search for the satisfiability of cn-wire, depth two threshold circuits

for every constant c (we refer to the satisfiability problem parametrized by the number of

wires as opposed to gates as SparseDepthTwoThr-sat). For the independently interesting

case of 0-1-ILP, we improve the constant savings to 1/poly(c), where cn is the number

of inequalities. Under SETH, these results are qualitatively the best we could hope for,

but we expect that further work will improve our results quantitatively. For example, our



35

savings is exponentially small in c, whereas in, e.g., the satisfiability algorithm of [81]

for AC0 circuits, it is polylogarithmic in c. We consider this just a first step towards a real

understanding of the satisfiability problem for threshold circuits, and hope that future

work will get improvements both in depth and in savings. A first step is due to Chen and

Santhanam [42], who improve the time bound for SparseDepthTwoThr-sat to savings

s(c) = 1/cO(c).

A series of related work (e.g. [146, 14, 15, 43, 136]) explores fast satisfiability

algorithms for threshold circuits and its implication to circuit lower bounds further. In

contrast to our algorithms, the related work achieves algorithms with time bounds of the

form 2n−nε

for circuits sizes significantly larger than linear. On the other hand, they do

not get algorithms with time bounds of the form 2(1−s)n, where s is constant, for linear

size circuits. Both the goal of optimizing constant savings for linear size circuits and

optimizing the size requirement to achieve polynomially small savings are well-motivated.

Constant savings provide a natural generalization to results on satisfiability algorithms

on more restricted circuit classes such as CNF-sat [131] and max-sat [51, 42], while

polynomially small savings are sufficient to exploit the connection between satisfiability

algorithms and circuit lower bounds [143].

Our main sub-routine is an algorithm for the VectorDomination problem: given

n vectors in Rd , is there a pair of vectors so that the first is larger than the second in

every coordinate? We show that, when d = c logn for a constant c, this problem can

be solved in subquadratic time. In contrast, Williams [142] shows that solving even

OrthogonalVectors, the Boolean special case of VectorDomination, with a subquadratic

algorithm when d = ω(logn) would refute SETH. Our algorithm is therefore closely

related to conditional lower bounds inside P based on SETH and other popular conjec-

tures. While fine-grained reductions from CNF-sat to problems in P are often used imply

conditional lower bounds based on SETH (see Section 2.7 for an overview), we use the



36

same fine-grained reductions to imply fast satisfiability algorithms.

3.1 Notation and Problems

We discuss and give algorithms for a number of satisfiability problems. Let V be

a set of Boolean variables with |V |= n. An assignment on V is a function V → {0,1}

that assigns every variable a Boolean value. A restriction is an assignment on a set U ⊆V .

For an assignment α and a variable x, α(x) denotes the value of x under the assignment

α .

A threshold gate on n variables x1, . . . ,xn is defined by weights wi ∈ R for 1≤

i≤ n and a threshold t. The output of the gate is 1, if ∑
n
i=1 wixi ≥ t and 0 otherwise. The

fan-in of the threshold gate is the number of nonzero weights. We call a variable an

input to a gate if the corresponding weight is nonzero. We define threshold gates with

real weights and thresholds and assume the real RAM model as a matter of presentation.

Without loss of generality, any threshold gate can be represented by integer weights

bounded by nO(n) [112], hence arithmetic operations are in time poly(n) even in the word

RAM model. We also extend the definition of a threshold gate to d-ary gates whose

inputs and outputs are d-ary.

For a collection of threshold gates, the number of wires is the sum of their fan-ins.

A depth two threshold circuit consists of a collection of m threshold gates (called the

bottom-level gates) on the same n variables and a threshold gate (called the top-level

gate) on the outputs of the bottom-level gates plus the variables. The output of the circuit

is the output of the top-level gate. We call a variable with nonzero weight at the top-level

gate a direct wire. For a d-ary depth two threshold circuit, the gates are d-ary gates and

the top-level gate only outputs Boolean values. The number of wires of a depth two

threshold circuit is the number of wires of the bottom-level gates. We call a threshold

circuit sparse if the the number of wires is linear in the number of variables.



37

We define two variant of the satisfiability problem on depth two threshold circuits,

one parametrized by the number of gates, and one parametrized by the number of wires.

Problem 6 (DepthTwoThr-sat). Given a depth two threshold circuit on n variables and

with cn bottom-level gates, decide if there is an input such that the circuit outputs 1.

Problem 7 (SparseDepthTwoThr-sat). Given a depth two threshold circuit on n vari-

ables and with cn wires, decide if there is an input such that the circuit outputs 1.

We also define a special case of DepthTwoThr-sat where the top-level gate

is restricted to be a conjunction. This problem is a Boolean case of integer linear

programming.

Problem 8 (0-1-ILP). Given a collection of cn threshold gates on the same n variables,

decide if there is an input such that all gates output 1.

We refer to the threshold gates of an integer linear program as the constraints or

inequalities. Note that we define the problem as the feasibility version of integer linear

programming. The more typical variant with a linear objective function is fine-grained

equivalent, as we can do a binary search for the objective value.

The VectorDomination problem is defined as follows:

Problem 9 (VectorDomination). Given a1, . . . ,an,b1, . . . ,bn ∈ Rd determine if there is

i, j such that ai ≤ b j component-wise.

3.2 Results and Techniques

The main contributions of this chapter are nontrivial algorithms for a number of

related problems, SparseDepthTwoThr-sat, 0-1-ILP, and VectorDomination. Our algo-

rithms are the first to achieve constant savings for SparseDepthTwoThr-sat with a linear



38

number of wires, 0-1-ILP with a linear number of constraints, and VectorDomination for

logarithmic dimensions.

For SparseDepthTwoThr-sat we prove the following:

Theorem 3.2.1. There is a satisfiability algorithm for depth two threshold circuits on n

variables with cn wires that runs in time Õ
(

2(1−s)n
)

where

s =
1

cO(c2)

While the proof in Section 3.4 assumes a Boolean inputs for simplicity, the proof

easily extends to threshold circuits with d-ary inputs, yielding the following corollary.

Corollary 3.2.1. There is a satisfiability algorithm for depth two threshold circuits on n

d-ary variables with cn wires that runs in time Õ
(

d(1−s)n
)

where

s =
1

cO(c2)

The algorithm consists of a chain of fine-grained reductions. We first reduce from

SparseDepthTwoThr-sat to 0-1-ILP, and then from 0-1-ILP to VectorDomination. The

algorithm is then completed with a subquadratic algorithm for VectorDomination.

The results for the 0-1-ILP problem and the VectorDomination problem are as

follows.

Lemma 3.2.1. There is an algorithm for the 0-1-ILP problem on n variables and d = cn

constraints that runs in time O
(
n2−s), where s = 1/poly(c).

Lemma 3.2.2. There is an algorithm for the VectorDomination problem on n vectors

and d = c logn dimensions that runs in time O
(
n2−s), where s = 1/poly(c).

In the following, we provide a high level description of our fine-grained reduction



39

from the SparseDepthTwoThr-sat problem to the 0-1-ILP problem. Intuitively, there are

two extreme cases for the bottom layer of a linear size threshold circuits of depth two.

The first extreme case is when we have a linear number of gates each with

bounded fan-in k. This case is almost equivalent to max-k-sat and can be handled in a

way similar to [35]. Consider the family of k-sets of variables given by the support of

each bottom-level gate. A probabilistic argument shows that, for some constant c, there

exists a subset U of about n−n/(ck) variables so that at most one element from each of

the k-sets in the family is outside of U . Then for any assignment to the variables in U ,

each bottom-level gate becomes either constant or a single literal, and the top-level gate

becomes a threshold function of the remaining inputs. To check if a threshold function is

satisfiable, we set each variable according to the sign of its weight. A threshold gate is

satisfiable if and only if this assignments satisfies the gate.

The second extreme case is when we have a relatively small number of bottom-

level gates, say, at most εn for some small ε , but some of the gates might have a large

fan-in. In this case we apply a series of fine-grained reductions from the satisfiability

problem of such circuits first to 0-1-ILP and subsequently to VectorDomination. We

reduce to 0-1-ILP by guessing the truth value of all bottom-level gates as well as the top

gate, and then verifying the consistency of our guesses. Since we guess the output of

threshold functions of the variables, testing consistency of our guesses is equivalent to

testing whether the feasible region of about εn linear inequalities has a Boolean solution,

that is testing for consistency is equivalent to the 0-1-ILP problem.

We then reduce the 0-1-ILP problem to the VectorDomination problem, in an

extension of the fine-grained reduction from CNF-sat to OrthogonalVectors [142] (see

Section 2.6) . To do this, we partition the variables arbitrarily into two equal size sets. For

each assignment to the first set, we compute a vector where the ith component corresponds

to the weighted sum contributed by the first set of variables to the ith threshold gate.



40

For the second set of variables, we do the same, but subtract the contribution from the

threshold for the gate. It is easy to see that the vectors corresponding to a satisfying

assignment are a dominating pair. Since there are N = O(2n/2) vectors in our set, and

each vector is of dimension d = εn = 2ε logN, to get constant savings, we need an

algorithm for the VectorDomination problem that is subquadratic when the dimension is

in the order of the logarithm of the number of vectors. The last step is to give such an

algorithm, using a simple but delicate divide-and-conquer strategy.

Finally, to put these pieces together, we need to reduce the arbitrary case to a

convex combination of the two extreme cases mentioned above. To do this, we prove

a fan-in separation lemma which asserts that there must be a relatively small value of

k so that there are relatively few gates of fan-in between k and ka, for some constant

a. We show that, as in the first extreme case, for a random subset U of variables, the

gates with fan-in less or equal to k almost entirely simplify to constants or literals after

setting the variables in U . Our selection of k ensures that the number of gates of fan-in

greater than k is small relative to the number of remaining variables. So we can apply

the method outlined for the second extreme case. The fan-in separation lemma is where

the savings s becomes exponentially small as a function of c. Unfortunately, this lemma

is essentially tight, so a new method of handling this step would be needed to make the

savings polynomially small.

The following two sections contain the details of the proof. Section 3.3 introduces

the VectorDomination problem and, for O(logn) dimension, gives an algorithm faster

than the trivial quadratic time. The feasibility of a 0-1-ILP with a small number of

inequalities is then reduced to the VectorDomination problem, yielding an algorithm for

such 0-1-ILP with constant savings. A reduction from the DepthTwoThr-sat problem

with εn bottom-level gates for small ε to 0-1-ILP concludes that section. In Section 3.4,

we show how to reduce the SparseDepthTwoThr-sat problem with cn wires to the special



41

case with a small number of bottom-level gates relative to the number of variables. The

remaining sections discuss generalizations of our result. Section 3.5 generalizes the result

to constant depth formulas, and Section 3.6 discusses more general symmetric gates.

3.3 Vector Domination Problem

In this section we give an algorithm for VectorDomination that is faster than the

trivial O(n2) for small enough dimensions.

Recall the definition of VectorDomination.

Problem 76 (VectorDomination). Given a1, . . . ,an,b1, . . . ,bn ∈ Rd determine if there is

i, j such that ai ≤ b j component-wise.

Note that we define VectorDomination with arbitrary real values, we can simplify

the problem to values in [n] by replacing the coordinate values by their rank with respect

to the same coordinate of the other vectors.

Our algorithm uses the weighted median of a collection of numbers. Here, every

number has an associated weight and the weighted median is a number such the both the

total weight of all numbers smaller than the median and the total weight of all numbers

larger than the median are at most half of the total weight. Note that the weighted median

can be computed in linear time.

The algorithm is a divide and conquer algorithm, splitting the two sets A and B

into sets A+,A−, B+ and B− depending on if the first coordinate is larger or smaller than

some weighted median. The weighted median is computed across both sets A and B.

Lemma 3.3.1. Let A,B⊆ Rd with |A| · |B|= n2 and d = c logn. There is an algorithm

for the VectorDomination problem that runs in time O
(

n2−s(c)
)

, where s(c) = 1/poly(c)

for c≥ 4 and at least 2−66 otherwise.



42

Proof. Let c′ = max{c,4}, ε = 1
c′15 , γ = 1

15logc′ and t = γ logn.

Furthermore, let a be the weighted median of the first coordinates of A∪B, where

all numbers from A have weight |B| and all number from B have weight |A|. Then, let

A+ ⊆ A consist of all vectors where the first coordinate is larger than a and A− consist of

all vectors where the first coordinate is smaller than a. Similarly, split B into two sets

B+ and B−. For vectors where the first coordinate is exactly a, it is sufficient to split the

vectors evenly between the two possible sets, as long as we do not at the same time add

vectors to A− and B+. This rounding is equivalent to adding a small positive noise to all

vectors in A and a small negative noise to all vectors in B.

Now a vector u ∈ A can only dominate a vector v ∈ B in one of three cases:

1. u ∈ A+ and v ∈ B+

2. u ∈ A− and v ∈ B−

3. u ∈ A+ and v ∈ B−

Also, in the third case any vector in A+ dominates any vector in B− on the first

coordinate, hence we can recurse on d−1 dimensions.

Let ε ′ = |A−|
|A| . Since we split at a weighted median where both A and B have the

same total weight, we have |A
−|
|A| =

|B+|
|B| = ε ′. We distinguish two cases, a balanced case

where ε ′ ≥ ε and an unbalanced case where ε ′ < ε . In the unbalanced case, we recurse

on all three subcases. In the balanced case, we also recurse on the three subcases and

further we decrement t. Once t = 0 we solve the Vector Domination problem on the

remaining vectors by exhaustive search.

To bound the runtime of above algorithm, we consider the recursion tree. We first

bound the time spent on exhaustive search in leaves where t = 0. Each of the n2 possible

pairs of dominating vectors appears in at most one of the subcases. Furthermore, in the



43

balanced case there are at least ε2n2 pairs where one vector is in A− and the other is in

B+ that are not considered in any subcase. Since there are t balanced cases on the path

from the root to any exhaustive leaf, the total time spent on exhaustive search is bounded

by

(1− ε
2)tn2 ≤ e−ε2γ lognn2 = n2−log(e)ε2γ = n

2− log(e)
15c′30 log(c′) = n2−poly(1/c′) (3.1)

For c′ = 4, we get the savings of 2−66 as claimed.

To bound the size of the recursion tree we bound the number of possible paths

from the root to any leaf. On any path, there are at most d steps that decrease the

dimension. Furthermore, there are at most t balanced cases on any path. For the

unbalanced case, in both subcases where the dimension does not decrease the number of

pairs of vertices is multiplied by a factor of at most ε ′ < ε , hence this can happen at most
log(n2)

log(1/ε) times along any path. Let

r = t +
log(n2)

log(1/ε)
=

(
γ +

2
log(1/ε)

)
logn =

1
5log(c′)

log(n) (3.2)

be an upper bound for any path to the number of subproblems that do not decrease the

dimension of the vectors. Taking into account that the time spent on computing the

median in every node is linear, the total time is bounded by

O(n)
(

d + r
r

)
2r ≤ O(n)

(
e
(
1+5c log(c′)

)) 1
5log(c′) logn

n
1

5log(c′) (3.3)

= O
(

n
1+log(e(1+5c log(c′))) 1

5log(c′)+
1

5log(c′)

)
(3.4)

We distinguish two cases. If c ≤ 4, then c′ = 4 and above bound simplifies to

O
(

n1+log(e(1+10c)) 1
10+

1
10

)
, which is monotonely increasing in c and hence maximized at



44

c = 4 where the bound is O
(
n1.781).

For c≥ 4, we have c′ = c. The bound is monotonely decreasing for large enough

c and maximized at c = 4, where the bound is again O
(
n1.781).

Note that the overall runtime is dominated by the time spent on exhaustive search

in the leaves.

Our algorithm is strongly subquadratic for any dimension d = O(logn). This

behavior matches the algorithms for related problems, such as OrthogonalVectors and

MaxInnProd, although the dependence on the constant may be different. The previously

fastest known algorithm due to Chan [37] is only strongly subquadratic for d = δ logn

dimensions for sufficiently small δ .

Chan [38] gives an improved analysis of the same algorithm and gets a time bound

n2−1/O(c log2 c), which incidentally matches the known upper bound for MaxInnProd.

The reduction from 0-1-ILP to the VectorDomination problem is an immediate

consequence of the split and list technique (see Section 2.6).

Corollary 3.3.1. Consider a 0-1-ILP program on n variables and cn inequalities for

some c > 0. Then we can find a solution in time O
(

2n−s(c)
)

, where s(c) = 1/poly(c) for

c≥ 4 and at least 2−66 for all c.

Proof. Separate the variable set into two sets S1 and S2 of equal size. We assign every

assignment to the variables in S1 and S2 a cn-dimensional vector where every dimension

corresponds to an inequality. Let α be an assignment to S1 and let ∑
n
i=1 wi, jxi ≥ t j be

the jth inequality for all j. Let a ∈ Rcn be the vector with a j = ∑xi∈S1 wi, jα(xi) and let

A be the set of 2n/2 such vectors. For an assignment β to S2, let b be the vector with

b j = t j−∑xi∈S2 wi, jxi(β ) and let B be the set of all such vectors b.

An assignment to all variables corresponds to an assignment to S1 and an assign-

ment to S2, and hence to a pair a ∈ A and b ∈ B. The pair satisfies all inequalities if and



45

only if a dominates b. Since |A| ∗ |B| = 2n and the dimension is cn, we can solve the

VectorDomination problem in time 2(1−1/poly(c))n.

We now reduce the satisfiability of a depth two threshold circuit with δn bottom-

level gates and any number of direct wires to the union of 2δn 0-1-ILP problems.

Corollary 3.3.2. Consider a depth two threshold circuit on n variables and δn bottom-

level gates for some 0 < δ < 2−66. We allow an arbitrary number of direct wires to

the top-level gate. Then there is a satisfiability algorithm that runs in time O
(

2n−s(δ )
)

where s(δ )> 0.

Proof. For every subset U of bottom-level gates, we solve the satisfiability problem

under the condition that only the bottom-level gates of U are satisfied. For an assignment

to satisfy both the circuit and the condition that only gates in U are satisfied, it must

satisfy the following system of inequalities:

1. For gates in U with weights w1, . . . ,wn and threshold t, we have ∑
n
i=1 wixi ≥ t.

2. For gates not in U we require ∑
n
i=1 wixi < t, which is equivalent to ∑

n
i=1−wixi ≥

−t +mini wi.

3. Let v1, . . . ,vn be the weights of the direct wires and let s be the threshold of the

top-level gate. Further let wU be the sum of the weights of the gates in U . Then

∑
n
i=1 vixi ≥ s−wU .

Note that this system contains δn+ 1 inequalities, and the additional dimension adds

only a polynomial factor to the time.

Since we need to solve a system of inequalities for every possible subset of

bottom-level gates to be satisfied, we have an additional factor of 2δn. For δ < 2−66, we

get a positive constant s(δ ).



46

One interpretation of the corollary above is as a fine-grained reduction from the

DepthTwoThr-sat problem to a weighted version of the MostDominantVectors problem

which is defined as follows.

Problem 10 (MostDominantVectors). Given a1, . . . ,an,b1, . . . ,bn ∈Rd and k ∈N deter-

mine if there is i, j such that ai ≤ b j in at least k dimensions.

While no subquadratic algorithms for the MostDominantVectors problem is

known for d = c logN dimensions for arbitrary c, we can reduce the problem to 2d

instances of VectorDomination. For c small enough, we get a subquadratic algorithm.

3.4 Fan-In Separation

In this section we reduce the SparseDepthTwoThr-sat problem with cn wires to

the DepthTwoThr-sat problem with at most δn bottom-level gates by considering all

possible assignments to a random subset U of variables. The goal of the restriction is to

eliminate all but a small fraction of gates. U will consist of all but a O(1/(ck)) fraction

of the variables where k is chosen such that there are only a small number of gates of

fan-in larger than k relative to the number of remaining variables. The fan-in separation

lemma shows how to find such a k.

Lemma 3.4.1 (Fan-In Separation Lemma). Let F be a family of sets such that

∑
F∈F
|F | ≤ cn (3.5)

Further let a > 1 and ε > 0 be parameters. There is a k with k ≤ ac/ε such that

∑
F∈F

k<|F |≤ka

|F | ≤ εn (3.6)



47

Proof. Assume otherwise for the sake of contradiction. For 0≤ i≤ c
ε

, let fi be the sum of

|F | where ai < |F | ≤ ai+1. By assumption we have fi > εn for all i. Hence ∑
c/ε

i=0 fi > cn,

which is a contradiction.

Lemma 3.4.2. Consider a depth two threshold circuit with n variables and cn wires. Let

δ > 0 and let U be a random set of variables such that each variable is in U with some

probability 1− p independently. There exists a p = 1
cO(c2)

such that the expected number

of bottom-level gates that depend on at least two variables not in U is at most 3δ pn.

Proof. Let ε = δ 2

c and a = c2

δ 2 and let k be the smallest value such that there are at most

εn wires as inputs to gates with fan-in between k and ka. Further let p = δ

ck .

Using the fan-in separation lemma we get k ≤
(

c2

δ 2

)c2/δ 2

. We distinguish three

types of bottom-level gates: Small gates, with fan-in at most k, medium gates with fan-in

between k and ka, and large gates with fan-in at least ka. For each type of gates, we

argue that the expected number of gates that depend on at least two variables not in U is

bounded by δ pn.

For medium gates, the total number of wires is bounded by δ 2

c n and each gate

contains at least k wires. Hence the number of medium gates is bounded by δ

ck δn = δ pn.

Large gates contain at least ka wires, hence the number of large gates is bounded

by c
kan = δ

ck δn = δ pn.

For small gates, we argue as follows. Let m be the number of small gates and

let l1, . . . , lm ≤ k be their fan-ins. Let Xi denote the event that gate i depends on at least

two variables not in U and let X be the number of such events that occur. We have

P(Xi)≤
(li

2

)
p2 ≤ l2

i p2 and therefore

E[X ] =
m

∑
i=1

P(Xi)≤
m

∑
i=1

l2
i p2 ≤ p2k

m

∑
i=1

li ≤ p2kcn = δ pn



48

Lemma 3.4.3. There is an algorithm for SparseDepthTwoThr-sat with cn wires that

runs in time 2(1−s)n for E[s] = 1
cO(c2)

.

Proof. Let δ = 2−68 and U as well as other parameters be as above. For every assignment

to U , we have a depth two threshold circuit with pn variables and 3δ pn bottom-level

gates in expectation. Since 3δ < 2−66, we can decide the satisfiability of such a circuit

using Corollary 3.3.2 with constant savings. Let s′ be the savings with our parameters.

Let T be the time for carrying out the entire procedure. Since we are interested in

the expected savings we consider the logarithm of the time and get

E[log(T )] = (1− p)n+(1− s′)pn = (1− s′p)n

and the lemma follows from p = 1
cO(c2)

.

Since s is bounded above by 1, we can repeat the process an expected constant

number of times until we find a restriction such that the savings is at least its expectation.

This gives us our main result Theorem 3.2.1.

3.5 Generalization to Formulas

In this section we discuss an extension of our main result to linear size, constant

depth threshold formulas. A formula is a circuit such that the output of every gate is an

input to at most one other gate. A formula can be viewed as a tree where the internal

nodes correspond to gates and the leaves to bottom variables. Note that a circuit of depth

two is always a formula. The proof is a direct generalization of our main proof.

Corollary 3.5.1. There is a satisfiability algorithm for depth d threshold formulas with



49

cn wires that runs in time Õ
(

2(1−s)n
)

where

s =
1

((d−1)c)O(((d−1)c)2)

Proof sketch. The algorithm chooses a random restriction such that at most δn gates

depend on more than one variable after restriction, where δ < 2−66 as before. As in the

original proof, we take into account that there is only a single top-level gate, which does

not simplify after restriction. The main difference to our main proof is the notion of the

fan-in. Instead of considering the number of inputs to a gate, consider the size of a gate.

The size of a gate is the size of the subtree rooted at that gate. It is also an upper bound

to the number of variables the gate depends on.

For all i≤ d, the sum of sizes of all gates at depth i is at most cn, since the circuit

is a tree with at most cn wires. Hence the sum of sizes of all gates (minus the top-level

gate) is at most (d−1)c.

Using the fan-in separation lemma we can select a set U of size pn where

p = 1
((d−1)c)O(((d−1)c)2)

such that the number of gates that depend on at least two variables

not in U is at most δn. We can then write each remaining gate as a linear inequality, as

each input is either a variable, a negated variable or a constant, which allows us to apply

Corollary 3.3.1.

3.6 Generalization to Symmetric Gates

In this section we discuss a second extension, to symmetric gates. A gate is

symmetric if the output depends only on the weighted sums of the inputs. In particular,

threshold gates are symmetric. The proof of our main result does not directly generalize

to symmetric gates, but we give a different algorithm to decide the satisfiability of

depth two circuits consisting of symmetric gates that follows similar ideas as our main



50

proof. For this algorithm we do however require that the weights are integer and small.

Specifically, we define the weighted fan-in of a gate as the sum of the absolute weights

and the weighted number of wires as the sum of the fan-ins of all the gates. The result

applies to circuits with a weighted fan-in of cn. We denote the satisfiability problem on

such circuits as the DepthTwoSym-sat problem.

The main difference between the two algorithms is the problem we reduce it

to after applying a restriction. In our main result, we reduce the satisfiability of the

simplified circuit to a (small) system of linear inequalities. Here, we reduce to a system

of linear equations. We first give an algorithm for linear equations.

Lemma 3.6.1. There is an algorithm to find a Boolean solution to a system of linear

equations on variables {x1, . . . ,xn} in time Õ(2n/2).

Proof. We first reduce the problem to subset sum. Let wi, j be the weight of xi in the jth

equation and let r j be right-hand side of the jth equation. Further let D = maxi, j{wi, j,r j}

be the largest such value. We define si = ∑ j wi, jD j and s = ∑ j r jD j. Then there is a

solution to the system of linear equations if and only if there is a subset of the si that

sums to s.

To solve the subset sum problem, partition the set of si into two sets of equal size

and list all 2n/2 possible subset sums each. We can then sort the lists in time O(2n/2n)

and determine if there is a pair of numbers that sums to s.

While the algorithm above uses Õ(2n/2) space, Ueno [138] shows that there is

a time-space tradeoff for the problem of finding Boolean solutions of systems of linear

equations.

We reduce the satisfiability problem of depth two threshold circuits with small

integer weights to a system of linear equations to get the following result.



51

Theorem 3.6.1. There is an algorithm for the DepthTwoSym-sat problem with weighted

number of wires cn that runs in time Õ
(

2(1−s)n
)

where

E[s] =
1

cO(c2)

As before, we pick a random restriction with some parameter p, such that most

gates depend on at most one variable.

Given an assignment, we distinguish between the Boolean output of a gate and

the value. The value is defined as the weighted sum of the inputs. Note that the value

uniquely defines the output of a symmetric gate. Unlike the fine-grained reduction for

SparseDepthTwoThr-sat, we guess the value of the remaining gates, including the top-

level gate. Given a value for every gate, we can write a system of linear equation. We

then solve the system of linear equations on n Boolean variables in time Õ(2n/2) using

Lemma 3.6.1.

We need the overhead for guessing the values to be smaller than the savings

achieved with solving the system of linear equations. For this, it is crucial that both the

number of remaining gates and the number of values they can obtain is small. Here we

use the requirement that the weights are small. We defer the details of the calculation on

how many systems of linear equations we need to solve until Section 3.6.1.

One possible approach would be to select p using a fan-in separation technique.

However, we only achieved savings that are doubly exponentially small in c using this

approach. To get better savings, it is useful to model the interplay between the parameter

p and the circuit as an explicit zero-sum game, where the first player’s (the algorithm

designer) pure strategies are the values of p and the second player’s (the circuit designer)

pure strategies are the circuits where all the gates have the same fan-in. The payoff is the

difference between the saving of solving the subset sum problem and the overhead of



52

guessing the values of the gates.

The mixed strategies of the circuit designer are circuits of symmetric gates with

a weighted number of wires of at most cn, where each such circuit is viewed as a

distribution of the total number of wires among gates of different weighted fan-in. The

mixed strategies of the algorithm designer are distributions on the values of p. We then

apply the Min-Max theorem to lower bound the expected value of the game by exhibiting

a distribution (with finite support) on the values of p. We search through the values

in the support of the distribution to find a p that produces the expected value. This

game-theoretic analysis yields an overall savings which is only single exponentially small

in c. Section 3.6.2 contains the details of the Min-Max approach.

3.6.1 The Algorithm

We develop the algorithm of Theorem 3.6.1 in three stages. In this section, we

consider p a parameter and present an algorithm for DepthTwoSym-sat with a weighted

number of wires of cn. We further assume that all the bottom-level gates have the same

weighted fan-in f . The algorithm achieves savings sp, f and for certain combinations

of p and f the savings might be negative. In the second stage we extend the algorithm

to circuits with varying fan-in and show that the savings of the algorithm is a convex

combination of sp, f . In the last stage, in Section 3.6.2 we show how to select a p such

that the savings is at least 1
cO(c2)

for any distribution on f .

As we are mainly interested in the savings, we look at the logarithm of the time

complexity and bound its expectation.

Lemma 3.6.2. Let 0≤ p≤ 1 be a parameter and C be a depth two circuit with symmetric

gates, variables V = {x1, . . . ,xn}, a weighted number of wires of cn, and weighted fan-in

f for all bottom-level gates. There is an algorithm that decides the satisfiability of such



53

C with time complexity T such that E[log(T )] = (1− sp, f )n for

sp, f =


p
4 if p f < 1

4c

p
2 −

c
f log(8cp f ) otherwise

Proof. We select a random subset U ⊆ V such that a variable is in U with probability

(1− p) independently. We note that E[|U |] = (1− p)n. For each of the 2|U | assignments

to U , we solve the satisfiability problem of the simplified circuit. Bottom-level gates

where all inputs are in U are removed and the top-level gate is adjusted appropriately.

Gates that only depend on one input are replaced by a direct wire to the top-level gate

with an appropriate weight and adjustment to the top-level gate. For all gates with at

least two remaining inputs, we guess the value of the gate and express the gate as a linear

equation. Similarly, we guess the value of the top-level gate to get another linear equation.

We then solve the resulting system of linear equations on n′ = n−|U | variables in time

Õ
(

2n′/2
)

using Lemma 3.6.1.

The critical part of the analysis is bounding the overhead from guessing the values

of the gates. We first bound the number of distinct values a gate can take. The top-level

gate can only take polynomially many different values. Consider a bottom-level gate with

fan-in l ≥ 2 after applying an assignment to the variables in U . We bounds the number

of distinct values that the gate can take in two different ways. The number of possible

inputs, and hence the number of possible values is bounded by 2l . On the other hand,

since the value is an integer between−l and l, the number of possible values for the gates

is also upper bounded by 2l +1. Hence, we use min{2l,2l +1} as an upper bound for

the number of values of a bottom-level gate with fan-in l.

The overhead crucially depends on the number of exceptional gates, gates that

depend on more than one variable after applying an assignment to the variables in U .



54

Intuition says that the number of exceptional gates should be small. If the fan-in of a

gate is small, then we expect that it will simplify to depend on at most one variable after

assigning values to the variables in U . On the other hand, there cannot be too many

gates of large fan-in. While the intuition is simple, it is tricky to make it work for us

in the general context. At this stage, our focus is on estimating the savings sp, f for the

probability parameter p and weighted fan-in f .

Let H be a random variable denoting the number of possible values the remaining

gates can obtain. Our estimation of H and sp, f involves two cases. Let t = 1
4c . We

first consider the case p f < t. Let U ′ ⊆ V −U be the set of variables that appear in

exceptional gates. Our goal is to upper bound E[log(H)]≤ E[U ′].

Consider a bottom-level gate. Let X be the random variable denoting the number

of its inputs not in U . Let f ′ ≤ f be the number of variables the gate depends on, and let

X be the random variable denoting the number of its inputs not in U . The distribution of

X is Bin( f ′, p), hence we have E[X ] = f ′p. Let the random variable Y denote the number

of variables that the gate can contribute to U ′. Since U ′ is the set of variables appearing

in exceptional gates, we have Y = X for X ≥ 2 and Y = 0 otherwise. Hence

E[Y ] = E[X ]−P[X = 1]≤ f ′p− f ′p(1− p)( f ′−1)

≤ f ′p(1− (1− p) f ′)≤ f ′p(1− (1− f ′p))

= ( f ′p)2 ≤ ( f p)2

by Bernoulli’s inequality. Hence, for any variable x which is an input to the gate, the

probability x belongs to U ′ is at most E[Y ]
f ≤ p2 f ≤ p

4c . Since the total number of wires is

bounded by cn, we have E[log(H)]≤ E[|U ′|] = cn p
4c =

p
4 n.



55

For the logarithm of the time complexity this yields

E[log(T )] = E[|U |]+E
[

1
2
(n−|U |)

]
+

p
4

n+O(logn)≤ n
(

1− p
4

)
+O(logn)

where the logarithmic summand stems from guessing the value of the top-level gate. We

have sp, f =
p
4 .

We now consider the case p f ≥ t. Suppose the ith gate has li inputs that are

not in U . The expected value of li is p f . There are at most 2li +1 possible values for

the gate. Since all the bottom-level gates have the same weighted fan-in f , the number

of bottom-level gates is at most cn/ f and E[∑cn/ f
i=1 li] = pcn. We bound the expected

logarithm of the number of possible values of all gates by

E

[
log

(
cn/ f

∏
i=1

)
(2li +1)

]
= (cn/ f )

cn/ f

∑
i=1

E [(log(2li +1) f/cn)]≤ (cn/ f ) log(2p f +1)

≤ (cn/ f ) log(8cp f )

where we use the concavity of the logarithm function in the penultimate step and the fact

p f ≥ 1
4c in the last step.

For the logarithm of the time complexity we get,

E[log(T )] = E [|U |]+E
[

1
2
(n−|U |)

]
+ cn/ f log(8cp f )+O(logn)

≤ n
(

1−
(

p
2
− c

f
log(8cp f )

))
+O(logn)

with savings sp, f =
p
2 −

c
f log(8cp f ).

We now extend the algorithm to circuits with varying fan-in and show that the

logarithm of the time complexities is lower bounded by a convex combination of the

savings sp, f . We model the cn-wire circuits of varying weighted fan-in by a distribution



56

F on fan-ins. For each weighted fan-in f , the wire distribution F specifies the number

c f n of wires of bottom-level gates of weighted fan-in f . We denote the savings of our

algorithm on circuits with wire distribution F by sp,F .

Lemma 3.6.3. Let 0≤ p≤ 1 be a parameter and C be a depth two circuit with symmetric

gates, n variables and a weighted number of wires of cn, where the wires are distributed

according to F . There is a satisfiability algorithm for such C with time complexity T

such that E[log(T )] = (1− sp,F )n for

sp,F ≥
n

∑
f=1

c f

c
sp, f

Proof. The algorithm is the same as above. The logarithm of the overhead of guessing

the values for all bottom-level gates with fan-in f is log(H f ) =
c f n

f log(8cp f ) if p f ≥ t

and log(H f ) =
c f
c

p
4 n otherwise. Solving the system of linear equations and using linearity

of expectation then yields the savings as claimed.

3.6.2 The Algorithm as a Zero-Sum Game

The time complexity of the algorithm in Section 3.6.1 depends crucially on

choosing a suitable parameter p. Instead of trying to directly determine a good parameter

p by analyzing the wire distribution of the circuit, we apply a trick from game theory.

A zero-sum game with two players A and C is a game where both players pick

a strategy and the outcome is determined by a function of the two strategies. Player

A tries to maximize the outcome, while player C tries to minimize it. The Min-Max

Theorem states that it does not matter which player moves first, as long as we allow

mixed strategies for the players.

We model the task of choosing the parameter p as the following zero-sum game:

Player A, the algorithm designer, picks some probability p, and player C, the circuit



57

designer, picks a value f . The outcome is sp, f , the savings of the algorithm. The algorithm

designer tries to maximize the savings, and the circuit designer tries to minimize it. The

wire distribution of a circuit is a mixed strategy for the circuit designer. A mixed strategy

for the algorithm designer A would be a distribution on the probabilities.

A direct approach for designing the algorithm would be to select the parameter

p depending on the circuit so that we obtain large savings. Specifically, given the wire

distribution of the circuit F , the algorithm designer picks a p and and the outcome sp,F

is a convex combination of the values sp, f . Using the Min-Max Theorem we turn this

game around: The algorithm designer picks a mixed strategy and the circuit designer

responds with a pure strategy f , a circuit where all bottom-level gates have weighted

fan-in f . The following lemma shows that there is a good strategy for the algorithm

designer.

Lemma 3.6.4. There is a distribution D on parameters p such that for all f ,

Ep∼D [sp, f ]≥
1

cO(c2)

Proof. Let D be the following distribution on p: For I = O
(
c2 log(c)

)
with suitable

constants, and 1 ≤ i ≤ I, we set p = 2−i with probability A · 2−(I−i+1), where A =

1
∑

I
i=1 2−(I−i+1) is the normalization factor. We know that 1≤ A≤ 2. The expectation of p is

E[p] = AI2−I−1.

Let f be any pure strategy of the circuit designer and J = log( f ). The expected

outcome of the game for these strategies is

Ep∼D [sp, f ] =
I

∑
i=1

2−(I−i+1)s2−i,2J .

To lower bound the expected outcome, we use a case analysis on the savings



58

similar to the one in Section 3.6.1. Let t = 1
4c as defined in the previous section. Let

I′ ≤ I be the largest value such that for i≤ I′, we have 2J−i ≥ t and for I′ < i≤ I we have

2J−i < t.

Using the savings from Lemma 3.6.2, we have s2−i,2J = 2−i−1− c
2J log

(
c2J−i+1)

for 2J−i ≥ t and s2−i,2J = 2−i−2 otherwise. The expected savings is then

Ep∼D [sp, f ] =
I

∑
i=1

2−(I−i+1)s2−i,2J

=
I′

∑
i=1

2−(I−i+1)
(

2−i−1− c
2J log

(
c2J−i+3))+ I

∑
i=I′+1

2−(I−i+1)2−i−2

≥
I

∑
i=1

2−(I+3)−
I′

∑
i=1

2−(I−i+1) c
2J log

(
c2J−i+3)

=
1

2I+1

(
I
4
− c

I′

∑
i=1

2−(J−i) log
(
c2J−i+3))

Let j = d(J− i)e. By the definition of I′ we have j ≥ log(t) = − log(c)− 2.

Hence

I′

∑
i=1

2−(J−i) log
(
c2J−i+3)≤ ∞

∑
j=log(t)

2− j ( j+ log(8c))

≤ 8c log(8c)+
∞

∑
j=1

j2− j + log(8c)

= O(c log(c))

Hence for I = O
(
c2 log(c)

)
we get

Ep∼D sp, f =
1

cO(c2)



59

We now conclude that for every f there is a p = 2−i for 1≤ i≤ I, such that sp, f ≥
1

cO(c2)
. Using that for every mixed strategy for f , the savings is a convex combination of

the savings for pure strategies, we conclude the same for any strategy on f .

This gives us the final algorithm: Given a circuit C with wire distribution F ,

evaluate E f∼F [sp, f ] with p = 2−i for each 1≤ i≤ I as above and use the optimal p for

the random restriction.

The savings is tight in the sense that there is a mixed strategy on f such that the

expected savings is at most 1/2Ω(c).

Lemma 3.6.5. There is a wire distribution F such that for any p

E f∼F [sp, f ]≤
1

2Ω(c)

Proof. Let p be the strategy of the algorithm designer and let F be the distribution such

that for 1≤ j ≤ c, c2 j = 1 and c f = 0 for any other f . By Lemma 3.6.3 we have

E f∼F [sp, f ] =
c

∑
j=1

1
c

sp,2 j

We argue that for large c and p≥ 1
2c , the savings is negative. Assume p≥ 1

2c . There is

some j∗ ≤ c such that for f = 2 j∗ , 1≤ p f ≤ 2. Using that for any p and f , the savings

sp, f is upper bounded by p
2 we get

E f∼F [sp, f ] =
c

∑
j=1

1
c

sp,2 j

≤ p
2
− 1

c
sp,2 j∗

=
p
2
− 1

c
c

2 j∗ log
(

cp2 j∗+3
)

≤ p
2
(1− (log(8c)+1))



60

For large c, the expectation is therefore negative. On the other hand, if p ≤ 1
2c , then

E f∼F [sp, f ]≤ 1
2c−1 .

3.7 Conclusion

In this chapter, we present the first nontrivial algorithm for deciding the sat-

isfiability of cn-wire threshold circuits of depth two. The algorithm improves over

exhaustive search by a factor 2sn where s = 1/cO(c2). We also give the first algorithms

with constant savings for the 0-1-ILP problem with a linear number of constraints and

the VectorDomination problem with a logarithmic number of dimensions.

Several straightforward open questions remain. Can we further improve the

savings? The savings in our algorithm is exponentially small in c, while the best known

savings for cn-size AC0 circuits is only polylogarithmically small in c [81]. Can we

decrease this gap? If not, can we explain it in terms of the expressive power of the

circuits?

Our algorithm handles only linear size threshold circuits of depth two. Can we

obtain nontrivial satisfiability algorithms for slightly more relaxed models? For example,

it would be very interesting to extend the result to larger depth circuits. It would also be

nice to generalize the algorithm to deal with depth two threshold circuits with linearly

many gates.

It would also be interesting to relax the restriction on the number of wires.

Unfortunately, as discussed earlier, it is not be possible to obtain a constant savings

algorithm for depth two threshold circuits of superlinearly many wires under SETH.

However, it might be possible to get an algorithm that depends on the number of bottom-

level gates, as opposed to number of wires.

The VectorDomination problem also raises a number of interesting questions,



61

such as its relationship to other SETH-hard problems. For example, OrthogonalVectors

admits an algorithm with time n2−1/O(logc) [7], where c logn is the dimension of the

vectors. The savings for the VectorDomination problem are an order of magnitude

smaller. Techniques to argue whether this discrepancy is necessary could prove to be

very insightful. Similarly, both the VectorDomination problem and the MinInnProd

problem of finding two vectors that minimize the inner product have algorithms with

time n2−1/poly(c), but while there are fine-grained reductions from OrthogonalVectors to

either problem, there is no fine-grained reduction in either direction.

Our algorithm is a Split and List algorithm [142], split the variable set into subsets

and list all assignments to the subsets. As such, it inherently takes exponential space.

Can we reduce the space requirement to polynomial space?

Chapter 3 is based on material as it appears in the following publications: Russell

Impagliazzo, Ramamohan Paturi, and Stefan Schneider. “A satisfiability algorithm for

sparse depth two threshold circuits.” In Foundations of Computer Science (FOCS), 2013

IEEE 54th Annual Symposium on, pp. 479-488. IEEE, 2013. [84] The author of this

dissertation was a principal author of this publication. Russell Impagliazzo, Shachar

Lovett, Ramamohan Paturi, and Stefan Schneider. “0-1 integer linear programming with

a linear number of constraints.” arXiv preprint arXiv:1401.5512 (2014). [80] The author

of this dissertation was a principal author of this publication. Material from Chapter 3 is

currently in preparation for submission for publication, by Russell Impagliazzo, Shachar

Lovett, Ramamohan Paturi, and Stefan Schneider. The author of this dissertation was a

principal author of this publication. We thank Dominik Scheder and Ryan Williams for

the fruitful discussions on the material in Chapter 3.



Chapter 4

Stable Matching

In this chapter we consider the StableMatching problem when the preference

lists are not given explicitly but are represented in a succinct way and ask whether

the problem becomes computationally easier and investigate other implications. We

give subquadratic algorithms for finding a stable matching in special cases of natural

succinct representations of the problem, the d-attribute, d-list, geometric, and single-

peaked models. We also present algorithms for verifying a stable matching in the same

models. We further show that for d = ω(logn) both finding and verifying a stable

matching in the d-attribute and d-dimensional geometric models requires quadratic time

assuming the SETH. This suggests that these succinct models are not significantly

simpler computationally than the general case for sufficiently large d.

The StableMatching problem has applications that vary from coordinating buyers

and sellers to assigning students to public schools and residents to hospitals [71, 96, 127].

Gale and Shapley [62] proposed a quadratic time deferred acceptance algorithm for

this problem which has helped clear matching markets in many real-world settings. For

arbitrary preferences, the deferred acceptance algorithm is optimal and even verifying

that a given matching is stable requires quadratic time [114, 132, 68]. This is reasonable

since representing all participants’ preferences requires quadratic space. However, in

many applications the preferences are not arbitrary and can have more structure. For

62



63

example, top doctors are likely to be universally desired by residency programs and

students typically seek highly ranked schools. In these cases participants can represent

their preferences succinctly. It is natural to ask whether the same quadratic time bounds

apply with compact and structured preference models that have subquadratic represen-

tations. This will provide a more nuanced understanding of where the complexity lies:

Is StableMatching inherently complex, or is the complexity merely a result of the large

variety of possible preferences? To this end, we examine several restricted preference

models with a particular focus on two originally proposed by Bhatnagar et al. [24], the

d-attribute and d-list models. Using a wide range of techniques we provide algorithms

and conditional hardness results for several settings of these models.

In the d-attribute model (AttributeMatching), we assume that there are d different

attributes (e.g. income, height, sense of humor, etc.) with a fixed, possibly objective,

ranking of the men for each attribute. Each woman’s preference list is based on a linear

combination of the attributes of the men, where each woman can have different weights

for each attribute. Some women may care more about, say, height whereas others care

more about sense of humor. Men’s preferences are defined analogously. This model is

applicable in large settings, such as online dating systems, where participants lack the

resources to form an opinion of every other participant. Instead the system can rank

the members of each gender according to the d attributes and each participant simply

needs to provide personalized weights for the attributes. The combination of attribute

values and weights implicitly represents the entire preference matrix. Bogomolnaia and

Laslier [27] show that representing all possible n×n preference matrices requires n−1

attributes. Therefore it is reasonable to expect that when d� n−1, we could beat the

worst case quadratic lower bounds for the general StableMatching problem.

In the d-list model (ListMatching), we assume that there are d different rankings

of the men. Each woman selects one of the d lists as her preference list. Similarly, each



64

man chooses one of d lists of women as his preference list. This model captures the

setting where members of one group (i.e. student athletes, sorority members, engineering

majors) may all have identical preference lists. Mathematically, this model is actually a

special case of the d-attribute model where each participant places a positive weight on

exactly one attribute. However, its motivation is distinct and we can achieve improved

results for this model.

Chebolu et al. [41] prove that approximately counting stable matchings in the

d-attribute model for d ≥ 3 is as hard as the general case. Bhatnagar et al. [24] showed

that sampling stable matchings using random walks can take exponential time even for a

small number of attributes or lists but left it as an open question whether subquadratic

algorithms exist for these models.

We show that faster algorithms exist for finding a stable matching in some

special cases of these models. In particular, we provide subquadratic algorithms for the

following models: the d-attribute model, where all values and weights are from a small

set (BoundedAttributeMatching), and the one-sided d-attribute model, where one side

of the market has only one attribute (OneSidedAttributeMatching). These results show

we can achieve meaningful improvement over the general setting for some restricted

preferences.

While we only provide subquadratic algorithms to find stable matchings in spe-

cial cases of the attribute model, we have stronger results concerning verification of

stable matchings (VerifyStableMatching). We demonstrate optimal subquadratic sta-

bility testing algorithms for the d-list (VerifyListMatching) and Boolean d-attribute

(VerifyBooleanAttributeMatching) settings as well as a subquadratic algorithm for the

general d-attribute model with constant d (VerifyAttributeMatching). These algorithms

provide a clear distinction between the attribute model and the general setting. Moreover,

these results raise the question of whether verifying and finding a stable matching are



65

equally hard problems for these restricted models, as both require quadratic time in the

general case.

Additionally, we show that the StableMatching problem in the d-attribute model

for d =ω(logn) cannot be solved in subquadratic time under the Strong Exponential Time

Hypothesis (SETH) [82, 85]. We show SETH-hardness for BooleanAttributeMatching,

the VerifyBooleanAttributeMatching problem and for checking if a given pair is in any

or all stable matchings (BooleanAttributeStablePair). These lower bounds apply even

when the weights and attributes are Boolean. This adds the StableMatching problem

to a growing list of SETH-hard problems (see Section 2.7 for an overview). Thus the

quadratic time hardness of the StableMatching problem in the general case extends to

the more restricted and succinct d-attribute model. This limits the space of models where

we can hope to find subquadratic algorithms.

We further present several results in related succinct preference areas. Single-

peaked preferences are commonly used to model preferences in social choice theory

because of their simplicity and because they often approximate reality. Essentially,

single-peaked preferences require that everyone agree on a common spectrum along

which all alternatives can be ranked. However, each individual may have a different ideal

choice and prefers the closest alternatives. A typical example is the political spectrum

where candidates fall somewhere between liberal and conservative. In this setting,

voters tend to prefer the candidates that are closer to their own ideals. As explained

below, these preferences can be succinctly represented. Bartholdi and Trick [21] present a

subquadratic time algorithm for StableRoommate (and StableMatching) with narcissistic,

single-peaked preferences. In the narcissistic case, the participants are located at their

own ideals. This makes sense in some applications but is not always realistic. We

provide a subquadratic algorithm to verify if a given matching is stable in the general

single-peaked preference model. Chung [45] uses a slightly different model of single-



66

peaked preferences where a stable roommate matching always exists. In this model the

participants would rather be unmatched than matched with someone further away from

their ideal than they are themselves, leading to incomplete preference lists.

We extend our algorithms and lower bounds for the attribute model to the geomet-

ric model where preference orders are formed according to euclidean distances among a

set of points in multi-dimensional space. Arkin et al. [16] derive a subquadratic algorithm

for stable roommates with narcissistic geometric preferences in constant dimensions. Our

algorithms do not require the preferences to be narcissistic.

It is worth noting that all of our verification and hardness results apply to the

StableRoommate problem as well. This problem is identical to stable matching except

we remove the bipartite distinction between the participants [71]. Unlike with (bipartite)

StableMatching, there need not always exist a stable roommate matching. However,

Irving [86] discovered an algorithm that produces a stable matching or identifies that

none exists in quadratic time. Since finding a stable roommate matching is strictly harder

than finding a stable matching, this is also optimal. Likewise, verification is equally

hard for both StableRoommate and StableMatching, as we can simply duplicate every

participant and treat the roommate matching as bipartite. Therefore, our results show

that verification can be done more efficiently for the StableRoommate problem when the

preferences are succinct.

Finally, we address the issue of strategic behavior in these restricted models. It is

often preferable for a market-clearing mechanism to incentivize truthful behavior from

the participants so that the outcome faithfully captures the optimal solution. Particularly

in matching markets, this objective complements the desire for a stable matching where

participants have incentives to cooperate with the outcome. Roth [126] showed that there

is no strategy proof mechanism to find a stable matching in the general preferences setting.

Additionally, if a mechanism outputs the man-optimal stable matching, the women can



67

manipulate it to obtain the woman-optimal solution by truncating their preference lists

[126, 63]. Even if the women are required to rank all men, they can still achieve more

preferable outcomes in some instances [137, 98]. However, in the d-attribute, d-list,

single-peaked, and geometric preference models, there are considerably fewer degrees of

freedom for preference misrepresentation. Nevertheless, we show that there is still no

strategy proof mechanism to find a stable matching for any of these models with d ≥ 2

and non-narcissistic preferences.

Dabney and Dean [50] study an alternative succinct preference representation

where there is a canonical preference list for each side and individual deviations from

this list are specified separately. They provide an adaptive O(n+ k) time algorithm for

the special one-sided case, where k is the number of deviations.

4.1 Summary of Results

Section 4.3.1 gives an O(C2dn(d + logn)) time algorithm for finding a stable

matching in the d-attribute model if both the attributes and weights are from a set of size

at most C (BoundedAttributeMatching). This gives a strongly subquadratic algorithm

(i.e. O(n2−ε) for ε > 0) if d < 1
2logC logn.

Section 4.3.2 considers the OneSidedAttributeMatching case, where one side of

the matching market has d attributes, while the other side has a single attribute. We allow

both the weights and attributes to be arbitrary real values. Our algorithm for finding

a stable matching in this model has time complexity Õ(n2−1/bd/2c), which is strongly

subquadratic for constant d.

In Section 4.4.1 we consider the problem of verifying that a given matching is

stable in the d-attribute model with real attributes and weights (VerifyAttributeMatching).

The time complexity of our algorithm is Õ(n2−1/2d), which is again strongly subquadratic

for constant d.



68

Section 4.4.2 gives an O(dn) time algorithm for verifying a stable matching in the

d-list model (VerifyListMatching). This is linear in its input size and is therefore optimal.

In Section 4.4.3 we give a randomized Õ(n2−1/O(c log2(c))) time algorithm for

d = c logn for verifying a stable matching in the d-attribute model when both the weights

and attributes are Boolean (VerifyBooleanAttributeMatching). This algorithm is strongly

subquadratic for d = O(logn).

In Section 4.5 we give a conditional lower bound for the three problems of

BooleanAttributeMatching, the VerifyBooleanAttributeMatching problem, as well as

the BooleanAttributeStablePair problem. We show that there is no strongly subquadratic

algorithm for any of these problems when d = ω(logn) assuming the SETH. For the

StablePair problem we give further evidence that even nondeterminism does not give a

subquadratic algorithm.

Finally in Section 4.6 we consider the related preference models of single-peaked

and geometric preferences. We extend our algorithms and lower bounds for the attribute

model to the geometric model and give an O(n logn) algorithm for verifying a stable

matching with single-peaked preferences.

4.2 Preliminaries

A matching market consists of a set of men M and a set of women W with

|M|= |W |= n. We further have a permutation of W for every m ∈M, and a permutation

of M for every w ∈W , called preference lists. Note that representing a general matching

market requires size Ω(n2).

For a perfect bipartite matching µ , a blocking pair with respect to µ is a pair

(m,w) 6∈ µ where m ∈M and w ∈W , such that w appears before µ(m) in m’s preference

list and m appears before µ(w) in w’s preference list. A perfect bipartite matching is

called stable if there are no blocking pairs. In settings where ties in the preference lists



69

are possible, we consider weakly stable matchings where (m,w) is a blocking pair if

and only if both strictly prefer each other to their partner. For simplicity, we assume all

preference lists are complete though our results trivially extend to cases with incomplete

lists.

Gale’s and Shapley’s deferred acceptance algorithm [62] works as follows. While

there is an unmatched man m, have m propose to his most preferred woman who has

not already rejected him. A woman accepts a proposal if she is unmatched or if she

prefers the proposing man to her current partner, leaving her current partner unmatched.

Otherwise, she rejects the proposal. This process finds a stable matching in time O(n2).

A matching market in the d-attribute model consists of n men and n women as

before. A participant p has attributes Ai(p) for 1≤ i≤ d and weights αi(p) for 1≤ i≤ d.

For a man m and woman w, m’s value of w is given by valm(w) = 〈α(m),A(w)〉 =

∑
d
i=1 αi(m)Ai(w). m ranks the women in decreasing order of value. Symmetrically, w’s

value of m is valw(m) = ∑
d
i=1 αi(w)Ai(m). Note that representing a matching market in

the d-attribute model requires size O(dn). Unless otherwise specified, both attributes and

weights can be negative.

A matching market in the d-list model is a matching market where both sides

have at most d distinct preference lists. Describing a matching market in this model

requires O(dn) numbers.

4.3 Finding Stable Matchings

4.3.1 Small Set of Attributes and Weights

We first present a stable matching algorithm for the d-attribute model when the

attribute and weight values are limited to a set of constant size. In particular, we assume

that the number of possible values for each attribute and weight for all participants is



70

bounded by a constant C.
Algorithm 1: Small Constant Attributes and Weights

Group the women into sets Si with a set for each of the C′ = O(C2d) types of

women (O(Cd) possible attribute values and O(Cd) possible weight vectors)

Associate an empty min-heap hi with each set Si

for each man m do

Create m’s preference list of sets Si

index(m)← 1

while there is a man m who is not in any heap do

Let Si be the index(m) set on m’s list

if |hi|< |Si| then

hi. insert(m)

else

if valSi(m)> valSi(hi.min) then

hi.delete min()

hi. insert(m)

index(m)← index(m)+1

for i = 1 to C′ do

µ ← µ
⋃

Arbitrarily pair women in Si with men in hi

return µ

Theorem 4.3.1. There is an algorithm to find a stable matching in the d-attribute model

with at most a constant C distinct attribute and weight values in time O(C2dn(d+ logn)).

Proof. Consider Algorithm 1. First observe that each man is indifferent between the

women in a given set Si because each woman has identical attribute values. Moreover,

the women in a set Si share the same ranking of the men, since they have identical weight

vectors. Therefore, since we are looking for a stable matching, we can treat each set of



71

women Si as an individual entity in a many to one matching where the capacity for each

Si is the number of women it contains.

With these observations, the stability follows directly from the stability of the

standard deferred acceptance algorithm for many-one stable matching. Indeed, each man

proposes to the sets of women in the order of his preferences and each set of women

tentatively accepts the best proposals, holding onto no more than the available capacity.

The grouping of the women requires O(C2d +dn) time to initialize the groups

and place each woman in the appropriate group. Creating the men’s preference lists

requires O(dC2dn) time to evaluate and sort the groups of women for every man. The

while loop requires O(C2dn(d + logn)) time since each man will propose to at most C2d

sets of women and each proposal requires O(d + logn) time to evaluate and update the

heap. This results in an overall running time of O(C2dn(d + logn)).

As long as d < 1
2logC logn, the time complexity in Theorem 4.3.1 will be sub-

quadratic. It is worth noting that the algorithm and proof actually do not rely on any

restriction of the men’s attribute and weight values. Thus, this result holds whenever one

side’s attributes and weight values come from a set of constant size.

4.3.2 One-Sided Real Attributes

In this section we consider a one-sided attribute model with real attributes and

weights. In this model, women have d attributes and men have d weights, and the

preference list of a man is given by the weighted sum of the women’s attributes as in the

two-sided attribute model. On the other hand there is only one attribute for the men. The

women’s preferences are thus determined by whether they have a positive or negative

weight on this attribute. For simplicity, we first assume that all women have a positive

weight on the men’s attribute and show a subquadratic algorithm for this case. Then we

extend it to allow for negative weights.



72

To find a stable matching when the women have a global preference list over the

men, we use a greedy approach: process the men from the most preferred to the least

preferred and match each man with the highest unmatched woman in his preference

list. This general technique is not specific to the attribute model but actually works for

any market where one side has a single global preference list. (e.g. [50] uses a similar

approach for their algorithm.) The complexity lies in repeatedly finding which of the

available women is most preferred by the current top man.

This leads us to the following algorithm: for every woman w consider a point

with A(w) as its coordinates and organize the set of points into a data structure. Then,

for the men in order of preference, query the set of points against a direction vector

consisting of the man’s weight and find the point with the largest distance along this

direction. Remove that point and repeat.

The problem of finding a maximal point along a direction is typically considered

in its dual setting, where it is called the RayShooting problem. In the RayShooting

problem we are given n hyperplanes and must maintain a data structure to answer queries.

Each query consists of a vertical ray and the data structure returns the first hyperplane hit

by that ray.

The relevant results are in Lemma 4.3.1 which follows from several papers for

different values of d. For an overview of the RayShooting problem and related range

query problems, see [11].

Lemma 4.3.1 ([75, 54, 9, 107]). Given an n point set in Rd for d≥ 2, there is a data struc-

ture for ray shooting queries with preprocessing time Õ(n) and query time Õ(n1−1/bd/2c).

The structure supports deletions with amortized update time Õ(1).

For d = 1, queries can trivially be answered in constant time. We use this data

structure to provide an algorithm when there is a global list for one side of the market.



73

Lemma 4.3.2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided

d-attribute model with real-valued attributes and weights in time Õ(n2−1/bd/2c) when

there is a single preference list for the other side of the market.

Proof. For a man m, let dim(m) denote the index of the last non-zero weight, i.e.

αdim(m)+1(m) = · · ·= αd(m) = 0

We assume dim(m)> 0, as otherwise m is indifferent among all women and we can pick

any woman as µ(m). We assume without loss of generality αdim(m)(m) ∈ {−1,1}. For

each d′ such that 1≤ d′ ≤ d we build a data structure consisting of n hyperplanes in Rd′ .

For each woman w, consider the hyperplanes

Hd′(w) =

{
xd′ =

d′−1

∑
i=1

Ai(w)xi−Ad′(w)

}
(4.1)

and for each d′ preprocess the set of all hyperplanes according to Lemma 4.3.1. Note

that Hd′(w) is the dual of the point (A1(w), . . . ,Ad′(w)).

For a man m we can find his most preferred partner by querying the dim(m)-

dimensional data structure. Let s = αdim(m)(m). Consider a ray r(m) ∈ Rdim(m) originat-

ing at

(−α1(m)

s
, . . . ,−

αdim(m)−1(m)

s
,−s ·∞) (4.2)

in the direction (0, . . . ,0,s). If αdim(m) = 1 we find the lowest hyperplane intersecting the

ray, and if αdim(m)=−1 we find the highest hyperplane. We claim that the first hyperplane

r(m) hits corresponds to m’s most preferred woman. Let woman w be preferred over

woman w′, i.e. valm(w) = ∑
dim(m)
i=1 Ai(w)αi(m)≥ ∑

dim(m)
i=1 Ai(w′)αi(m) = valm(w′). Since

the ray r(m) is vertical in coordinate xd′ , it is sufficient to evaluate the right-hand side of



74

the definition in equation 4.1. Indeed we have valm(w)≥ valm(w′) if and only if

dim(m)−1

∑
i=1

−Ai(w)
αi(m)

s
−Adim(m)(w)≤

dim(m)−1

∑
i=1

−Ai(w′)
αi(m)

s
−Adim(m)(w

′) (4.3)

when s = 1 and

dim(m)−1

∑
i=1

−Ai(w)
αi(m)

s
−Adim(m)(w)≥

dim(m)−1

∑
i=1

−Ai(w′)
αi(m)

s
−Adim(m)(w

′) (4.4)

when s =−1.

Note that the query ray is dual to the set of hyperplanes with normal vector

(α1(m), . . . ,αd(m)).

Now we pick the highest man m in the (global) preference list, consider the ray

as above and find the first hyperplane Hdim(m)(w) hit by the ray. We then match the pair

(m,w), remove H(w) from all data structures and repeat. Correctness follows from the

correctness of the greedy approach when all women share the same preference list and

the properties of the halfspaces proved above.

The algorithm preprocesses d data structures, then makes n queries and dn

deletions. The time is dominated by the n ray queries each requiring time Õ(n1−1/bd/2c).

Thus the total time complexity is bounded by Õ(n2−1/bd/2c), as claimed.



75

Algorithm 2: One-Sided Stable Matching

// For points in P ∈ Rd we use the notation (x1, . . . ,xd) to

refer to its coordinates

input: matching µ

for d′ = 1 to d do

for each woman w do

H(w)←{xd = ∑
d−1
i=1 Ai(w)xi−Ad′(w)}

Hd′ ← Hd′ ∪H(w)

Hd′ .preprocess()

for each man m in order of preference do

s← αdim(m)(m)

r(m)← (−α1(m)
s , . . . ,−αdim(m)−1(m)

s ,∞ · s)+ t · (0, . . . ,0,−s)

H(w)← Query(Hdim(m),r(m))

µ ← µ ∪ (m,w)

for d′ = 1 to d do

Hd′ ← Hd′−Hd′(w)

return µ

Note that for d = 1 there is a trivial linear time algorithm for the problem.

We use the following lemma to extend the above algorithm to account for positive

and negative weights for the women. It deals with settings where the women choose one

of two lists (σ1,σ2) as their preference lists over the men while the men’s preferences

can be arbitrary.

Lemma 4.3.3. Suppose there are k women who use σ1. If the top k men in σ1 are in the

bottom k places in σ2, then the women using σ1 will only match with those men and the

n− k women using σ2 will only match with the other n− k men in the woman-optimal



76

stable matching.

Proof. Consider the operation of the woman-proposing deferred acceptance algorithm

for finding the woman-optimal stable matching. Suppose the lemma is false so that at

some point a woman using σ1 proposed to one of the last n− k men in σ1. Let w be the

first such woman. w must have been rejected by all of the top k, so at least one of those

men received a proposal from a woman, w′, using σ2. However, since the top k men in

σ1 are the bottom k men in σ2, w′ must have been rejected by all of the top n− k men

in σ2. But there are only n− k women using σ2, so one of the top n− k men in σ2 must

have already received a proposal from a woman using σ1. This is a contradiction because

w was the first woman using σ1 to propose to one of the bottom n− k men in σ1 (which

are the top n− k men in σ2).

We can now prove the following theorem where negative values are allowed for

the women’s weights.

Theorem 4.3.2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided

d-attribute model with real-valued attributes and weights in time Õ(n2−1/bd/2c).

Proof. Suppose there are k women who have a positive weight on the men’s attribute.

Since the remaining n−k women’s preference list is the reverse, we can use Lemma 4.3.3

to split the problem into two subproblems. Namely, in the woman-optimal stable matching

the k women with a positive weight will match with the top k men, and the n− k women

with a negative weight will match with the bottom n−k men. Now the women in each of

these subproblems all have the same list. Therefore we can use Lemma 4.3.2 to solve

each subproblem. Splitting the problem into subproblems can be done in time O(n) so

the running time follows immediately from Lemma 4.3.2.



77

Table 4.1. Two-list preferences where no participant receives their top choice in the
stable matching

σ1 σ2 π1 π2

m1 m3 w1 w3

m2 m5 w2 w5

m3 m1 w3 w1

m4 m4 w4 w4

m5 m2 w5 w2

Man List

m1 π1

m2 π1

m3 π2

m4 π1

m5 π2

Woman List

w1 σ2

w2 σ2

w3 σ1

w4 σ2

w5 σ1

As a remark, this “greedy” approach where we select a man, find his most

preferred available woman, and permanently match him to her will not work in gen-

eral. Table 4.1 describes a simple 2-list example where the unique stable matching

is {(m1,w2),(m2,w3),(m3,w5),(m4,w4),(m5,w1)}. In this instance, no participant is

matched with their top choice. Therefore, the above approach cannot work for this

instance. This illustrates to some extent why the general case seems more difficult than

the one-sided case.

An alternative model of a greedy approach that is based on work by Davis and

Impagliazzo in [52] also will not work. In this model, an algorithm can view each of

the lists and the preferences of the women. It can then (adaptively) choose an order

in which to process the men. When processing a man, he must be assigned a partner

(not necessarily his favorite available woman) once and for all, based only on his choice

of preference list and the preferences of the previously processed men. This model is

similar to online stable matching [93] except that it allows the algorithm to choose the

processing order of the men. Using the preferences in Table 4.2 and minor modifications

to them, we can show that no greedy algorithm of this type can successfully produce a



78

stable matching. Indeed, the unique stable matching of the preference scheme below is

µ = {(m1,w3),(m2,w1),(m3,w2)}. However, changing the preference list for whichever

of m1 or m2 is processed later will form a blocking pair with the stable partner of the

other. If m1 uses π1, (m1,w1) blocks µ and if m2 uses π2, (m2,w3) blocks µ . Therefore,

no algorithm can succeed in assigning stable partners to these men without first knowing

the preference list choice of all three.

Table 4.2. Two-list preferences where a greedy approach will not work

σ1 σ2 π1 π2

m1 m2 w1 w3

m2 m1 w2 w2

m3 m3 w3 w1

Man List

m1 π2

m2 π1

m3 π1

Woman List

w1 σ1

w2 σ2

w3 σ2

4.3.3 Strategic Behavior

As mentioned earlier, strategic behavior in the general preference setting allows

for participants to truncate or rearrange their lists. However, in the d-attribute and d-list

models, we assume that the attributes or lists are fixed, so that the only manipulation the

participants are allowed is to misrepresent their weight vectors or which list they choose.

Despite this limitation, there is still no strategy proof mechanism for finding a stable

matching when d ≥ 2.

Theorem 4.3.3. For d ≥ 2 there is no strategy proof algorithm to find a stable matching

in the d-list model.

Proof. Table 4.3 describes true preferences that can be manipulated by the women.



79

Observe that there are two stable matchings: the man-optimal matching

{(m1,w1),(m2,w2),(m3,w3),(m4,w4)}

and the woman-optimal matching

{(m1,w2),(m2,w3),(m3,w1),(m4,w4)}

However, if w2 used list σ2 instead of σ1, then there is a unique stable matching which

is {(m1,w2),(m2,w3),(m3,w1),(m4,w4)}, the woman-optimal stable matching from the

original preferences. Therefore, any mechanism that does not always output the woman

optimal stable matching can be manipulated by the women to their advantage. By

symmetry, any mechanism that does not always output the man-optimal matching could

be manipulated by the men. Thus there is no strategy-proof mechanism for the d-list

setting with d ≥ 2.

Table 4.3. Two-list preferences that can be manipulated

σ1 σ2 π1 π2

m1 m3 w1 w3

m2 m1 w2 w1

m3 m4 w3 w2

m4 m2 w4 w4

Man List

m1 π1

m2 π1

m3 π2

m4 π2

Woman List

w1 σ2

w2 σ1

w3 σ1

w4 σ1

Since the d-list model is a special case of the d-attribute model, we immediately

have the following result from Theorem 4.3.3.



80

Corollary 4.3.1. For d ≥ 2 there is no strategy proof algorithm to find a stable matching

in the d-attribute model.

Of course in the 1-list setting there is a trivial unique stable matching. Moreover,

in the one-sided d-attribute model our algorithm is strategy proof since the women are

receiving the woman-optimal matching and each man receives his best available woman,

so misrepresentation would only give him a worse partner.

4.4 Verification

We now turn to the problem of verifying whether a given matching is stable.

While this is as hard as finding a stable matching in the general setting, the verification

algorithms we present here are more efficient than our algorithms for finding stable

matchings in the attribute model.

4.4.1 Real Attributes and Weights

In this section we adapt the geometric approach for finding a stable matching

in the one-sided d-attribute model to the problem of verifying a stable matching in the

(two-sided) d-attribute model. We express the verification problem as a simplex range

searching problem in R2d , which is the dual of the RayShooting problem. In simplex

range searching we are given n points and answer queries that ask for the number of

points inside a simplex. In our case we only need degenerate simplices consisting of the

intersection of two halfspaces. Simplex range searching queries can be done in sublinear

time for constant d.

Lemma 4.4.1 ([106]). Given a set of n points in Rd , one can process it for simplex range

searching in time O(n logn), and then answer queries in time Õ(n1− 1
d ).

For 1≤ d′ ≤ d we use the notation (x1, . . . ,xd,y1, . . . ,yd′−1,z) for points in Rd+d′ .



81

We again let dim(w) be the index of w’s last non-zero weight, assume without loss of

generality αdim(w) ∈ {−1,1}, and let sgn(w) = sgn(αdim(w)). We partition the set of

women into 2d sets Wd′,s for 1≤ d′ ≤ d and s ∈ {−1,1} based on dim(w) and sgn(w).

Note that if dim(w) = 0, then w is indifferent among all men and can therefore not be

part of a blocking pair. We can ignore such women.

For a woman w, consider the point

P(w) = (A1(w), . . . ,Ad(w),α1(w), . . . ,αdim(w)−1(w),valw(m)) (4.5)

where m = µ(w) is the partner of w in the input matching µ . For a set Wd′,s we let Pd′,s

be the set of points P(w) for w ∈Wd′,s. The basic idea is to construct a simplex for every

man and query it against all sets Pd′,s.

Given d′,s, and a man m, let H1(m) be the halfspace
{

∑
d
i=1 αi(m)xi > valm(w)

}
where w= µ(m). For w′ ∈Wd′,s we have P(w′)∈H1(m) if and only if m strictly prefers w′

to w. Further let H2(m) be the halfspace
{

∑
d′−1
i=1 Ai(m)yi +Ad′(m)s > z

}
. For w′ ∈Wd′,s

we have P(w′) ∈ H2(m) if and only if w′ strictly prefers m to µ(w′). Hence (m,w′) is a

blocking pair if and only if P(w′) ∈ H1(m)∩H2(m).

Using Lemma 4.4.1 we immediately have an algorithm to verify a stable matching.

Theorem 4.4.1. There is an algorithm to verify a stable matching in the d-attribute

model with real-valued attributes and weights in time Õ(n2−1/2d)

Proof. Partition the set of women into sets Wd′,s for 1 ≤ d′ ≤ d and s ∈ {−1,1} and

for w ∈Wd′,s construct P(w) ∈ Rd+d′ as above. Then preprocess the sets according to

Lemma 4.4.1. For each man m query H1(m)∩H2(m) against the points in all sets. By

the definitions of H1(m) and H2(m), there is a blocking pair if and only if for some man

m there is a point P(w) ∈ H1(m)∩H2(m) in one of the sets Pd′,s.



82

The time to preprocess is O(n logn). There are 2dn queries of time Õ(n1−1/2d).

Hence the whole process requires time Õ(n2−1/2d) as claimed.

Algorithm 3: Verify Stable Matching with Reals

// For points in P ∈ Rd+d′ we use the notation

(x1, . . . ,xd,y1, . . . ,yd′−1,z) to refer to its coordinates

input: matching µ

for each woman w do

m← µ(w)

P(w)← (A1(w), . . . ,Ad(w),α1(w), . . . ,αd(w),valw(m))

Pdim(w),sgn(w)←Wdim(w),sgn(w)∪P(w)

for d′ = 1 to d and s ∈ {−1,1} do

Pd′,s.preprocess()

for each man m do

w← µ(m)

H1(m)←
{

∑
d
i=1 αi(m)xi > valm(w)

}
H2(m)←

{
∑

d′−1
i=1 Ai(m)yi +Ad′(m) · s > z

}
if Query(Pd′,s,H1(m)∩H2(m))> 0 then

return µ is not stable

return µ is stable

4.4.2 Lists

When there are d preference orders for each side, and each participant uses one of

the d lists, we provide a more efficient algorithm. Here, assume µ is the given matching

between M and W . Let {πi}d
i=1 be the set of d permutations on the women and {σi}d

i=1

be the set of d permutations on the men. Define rank(w, i) to be the position of w in

permutation πi. This can be determined in constant time after O(dn) preprocessing of



83

the permutations. Let head(πi, j) be the first woman in πi who uses permutation σ j and

next(w, i) be the next highest ranked woman after w in permutation πi who uses the same

permutation as w or⊥ if no such woman exists. These can also be determined in constant

time after O(dn) preprocessing by splitting the lists into sublists, with one sublist for the

women using each permutation of men. The functions rank, head, and next are defined

analogously for the men.
Algorithm 4: Verify d-List Stable Matching

for i = 1 to d do

for j = 1 to d do

w← head(πi, j)

m← head(σ j, i)

while m 6=⊥ and w 6=⊥ do

if rank(w, i)> rank(µ(m), i) then

m← next(m, j)

else

if rank(m, j)> rank(µ(w), j) then

w← next(w, i)

else
return (m,w) is a blocking pair

return µ is stable.

Theorem 4.4.2. There is an algorithm to verify a stable matching in the d-list model in

O(dn) time.

Proof. We claim that Algorithm 4 satisfies the theorem. Indeed, if the algorithm returns

a pair (m,w) where m uses πi and w uses σ j, then (m,w) is a blocking pair because w

appears earlier in πi than µ(m) and m appears earlier in σ j than µ(w).

On the other hand, suppose the algorithm returns that µ is stable but there



84

is a blocking pair, (m,w), where m uses πi and w uses σ j. The algorithm considers

permutations πi and σ j since it does not terminate early. Clearly if the algorithm evaluates

m and w simultaneously when considering permutations πi and σ j, it will detect that

(m,w) is a blocking pair. Therefore, the algorithm either moves from m to next(m, j)

before considering w or it moves from w to next(w, i) before considering m. In the former

case, rank(µ(m), i) < rank(w′, i) for some w′ that comes before w in πi. Therefore m

prefers µ(m) to w. Similarly, in the latter case, rank(µ(w), j)< rank(m′, i) for some m′

that comes before m in σ j so w prefers µ(w) to m. Thus (m,w) is not a blocking pair and

we have a contradiction.

The for and while loops proceed through all men and women once for each of

the d lists in which they appear. Since at each step we are either proceeding to the next

man or the next woman unless we find a blocking pair, the algorithm requires time O(dn).

This is optimal since the input size is dn.

4.4.3 Boolean Attributes and Weights

In this section we consider the problem of verifying a stable matching when the

d attributes and weights are restricted to Boolean values and d = c logn. The algorithm

closely follows an algorithm for the MaxInnProd problem by Alman and Williams [15].

The idea is to express the existence of a blocking pair as a probabilistic polynomial with a

bounded number of monomials and use fast rectangular matrix multiplication to evaluate

it. A probabilistic polynomial for a function f is a polynomial p such that for every input

x

Pr[ f (x) 6= p(x)]≤ 1
3

(4.6)

We use the following tools in our algorithm. THRd is the threshold function that

outputs 1 if at least d of its inputs are 1.



85

Lemma 4.4.2 ([15]). There is a probabilistic polynomial for THRd on n variables and

error ε with degree O(
√

n log(1/ε)).

Lemma 4.4.3 ([124, 135]). There is a probabilistic polynomial for the disjunction of n

variables and error ε with degree O(log(1/ε))

Lemma 4.4.4 ([144]). Given a polynomial P(x1, . . . ,xm,y1, . . .ym) with at most n0.17

monomials and two sets X ,Y ⊆ {0,1}m with |X | = |Y | = n, we can evaluate P on all

pairs (x,y) ∈ X×Y in time Õ(n2 +m ·n1.17).

We construct a probabilistic polynomial that outputs 1 if there is a blocking pair.

To minimize the degree of the polynomial, we pick a parameter s and divide the men

and women into sets of size at most s. The polynomial takes the description of s men

m1, . . . ,ms and s women w1, . . . ,ws along with their respective partners as input, and

outputs 1 if and only if there is a blocking pair (mi,w j) among the s2 pairs of nodes with

high probability.

Lemma 4.4.5. Let u be a large constant and s = n1/uc log2 c. There is a probabilistic

polynomial with the following inputs:

• The attributes and weights of s men

A(m1), . . . ,A(ms),α(m1), . . . ,α(ms)

• The attributes of the s women that are matched with these men

A(µ(m1)), . . . ,A(µ(ms))



86

• The attributes and weights of s women

A(w1), . . . ,A(ws),α(w1), . . . ,α(ws)

• The attributes of the s men that are matched with these women

A(µ(w1)), . . . ,A(µ(ws))

The output of the polynomial is 1 if and only if there is a blocking pair with respect to the

matching µ among the s2 pairs in the input. The number of monomials is at most n0.17

and the polynomial can be constructed efficiently.

Proof. A pair (mi,w j) is a blocking pair if and only if

〈α(mi),A(µ(mi))〉< 〈α(mi),A(w j)〉

and

〈α(w j),A(µ(w j))〉< 〈α(w j),A(mi)〉

Rewriting

F(x,y,a,b) := 〈x,y〉< 〈a,b〉= THRd+1 (¬(x1∧ y1), . . . ,¬(xd ∧ yd),a1∧b1, . . . ,ad ∧bd)

(4.7)

we have a blocking pair if and only if

∨
i∈[1,s]
j∈[1,s]

(
F(α(mi),A(µ(mi)),α(mi),A(w j))∧F(α(w j),A(µ(w j)),α(w j),A(mi))

)
(4.8)

Note that we can easily adapt this algorithm to finding strongly blocking pairs by



87

defining F(x,y,a,b) as 〈x,y〉 ≤ 〈a,b〉.

Using Lemma 4.4.2 with ε = 1
s3 and Lemma 4.4.3 with ε = 1/4 we get a proba-

bilistic polynomial of degree a
√

d logs for some constant a and error 1/4+1/s < 1/3.

Furthermore, since we are only interested in Boolean inputs we can assume the polyno-

mial to be multilinear. For large enough u we have 2d > a
√

d log(s) (i.e. the degree is at

most half of the number of variables) and the number of monomials is then bounded by

O
((

s2( 4d
a
√

d log(s)

))2
)

.

Simplifying the binomial coefficient we have

(
4d

a
√

d logs

)
=

( 4c logn

a
√

(log2 n)/u log2 c

)
=

(
4c logn

a logn/
√

u logc

)

Setting δ = a/(
√

u log(c)) we can upper bound this using Stirling’s inequality by

(
4c logn
δ logn

)
≤
(
(4c logn) · e

δ

)δ logn

= nδ log(4ce/δ )

By choosing u to be a large enough constant, we can make δ and the exponent

arbitrarily small. The factor of s2 only contributes a trivial constant to the exponent.

Therefore we can bound the number of monomials by n0.17.

Theorem 4.4.3. In the d-attribute model with n men and women, and d = c logn Boolean

attributes and weights, there is a randomized algorithm to decide if a given matching is

stable in time Õ(n2−1/O(c log2(c))) with error probability at most 1/3.

Proof. We again choose s = n1/uc log2 c and construct the probabilistic polynomial as in

Lemma 4.4.5. We then divide the men and women into dn
s e groups of size at most s.

For a group of men m1, . . . ,ms we let the corresponding input vector be

A(m1), . . . ,A(ms),α(m1), . . . ,α(ms),A(µ(m1)), . . . ,A(µ(ms))



88

We set X as the set of all input vectors for the dn
s e groups. We define the set Y symmetri-

cally for the input vectors corresponding to the dn
s e groups of women.

Using Lemma 4.4.4 we evaluate the polynomial on all pairs x ∈ X , y ∈ Y in time

Õ
((n

s

)2
+O(sd)

(n
s

)1.17
)
= Õ

((n
s

)2
)
= Õ(n2−1/O(c log2(c))) (4.9)

The probability that the output is wrong for any fixed input pair is at most 1/3. We repeat

this process O(logn) times and take the threshold output for every pair of inputs, such

that the error probability is at most O
(

1
n2

)
for any fixed pair of inputs. Using a union

bound we can make the probability of error at most 1/3 on any input.

4.5 Conditional Hardness

4.5.1 Background

The Strong Exponential Time Hypothesis has proved useful in arguing conditional

hardness for a large number of problems. We show SETH-hardness for both verifying

and finding a stable matching in the d-attribute model, even if the weights and attributes

are Boolean. The main step of the proof is a reduction from the MaxInnProd problem

to variants of the stable matching problem. Recall the definition and the fact that the

problem is SETH-hard (see Section 2.7 for a proof).

Problem 2 (MaxInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d and k ∈ nats,

determine if there is i, j ∈ [n] satisfying 〈ai,b j〉 ≥ k.

Lemma 4.5.1 ([15]). Assuming SETH, for any ε > 0, there is a c such that solving the

MaxInnProd problem on d = c logn dimensions requires time Ω(n2−ε).



89

4.5.2 Finding Stable Matchings

In this subsection we give a fine-grained reduction from the MaxInnProd problem

to the problem of finding a stable matching in the Boolean d-attribute model. This

shows that the StableMatching problem in the d-attribute model is SETH-hard, even if

we restrict the attributes and weights to Booleans.

Theorem 4.5.1. Assuming SETH, for any ε > 0, there is a c such that finding a stable

matching in the Boolean d-attribute model with d = c logn dimensions requires time

Ω(n2−ε).

Proof. The proof is a reduction from MaxInnProd to finding a stable matching. Given

an instance of the MaxInnProd problem with sets U,V ⊆ {0,1}d where |U | = |V | = n

and threshold l, we construct a matching market with n men and n women. For every

u ∈U we have a man mu with A(mu) = u and α(mu) = u. Similarly, for vectors v ∈V

we have women wv with A(wv) = v and α(wv) = v. This matching market is symmetric

in the sense that for mu and wv, valmu(wv) = valwv(mu) = 〈u,v〉.

We claim that any stable matching contains a pair (mu,wv) such that the inner

product 〈u,v〉 is maximized. Indeed, suppose there are vectors u∈U , v∈V with 〈u,v〉 ≥ l

but there exists a stable matching µ with 〈u′,v′〉 < l for all pairs (mu′,wv′) ∈ µ . Then

(mu,wv) is clearly a blocking pair for µ which is a contradiction.

4.5.3 Verifying Stable Matchings

In this section we give a reduction from the MaxInnProd problem to the problem

of verifying a stable matching, showing that this problem is also SETH-hard.

Theorem 4.5.2. Assuming SETH, for any ε > 0, there is a c such that verifying a stable

matching in the Boolean d-attribute model with d = c logn dimensions requires time

Ω(n2−ε).



90

Proof. We give a reduction from MaxInnProd with sets U,V ⊆ {0,1}d where |U | =

|V | = n and threshold l. We construct a matching market with 2n men and women in

the d′-attribute model with d′ = d +2(l−1). Since d′ < 3d the theorem then follows

immediately from the SETH-hardness of MaxInnProd.

For u ∈U , let mu be a man in the matching market with attributes and weights

A(mu) = α(mu) = u◦1l−1 ◦0l−1 where we use ◦ for concatenation. Similarly, for v ∈V

we have a woman wv with A(wv) = α(wv) = v◦0l−1 ◦1l−1. We further introduce dummy

women w′u for u ∈U with A(w′u) = α(w′u) = 0d ◦ 1l−1 ◦ 0l−1 and dummy men m′v for

v ∈V with A(m′v) = α(m′v) = 0d ◦0l−1 ◦1l−1.

We claim that the matching consisting of pairs (mu,w′u) for all u ∈U and (m′v,wv)

for all v ∈ V is stable if and only if there is no pair u ∈U , v ∈ V with 〈u,v〉 ≥ l. For

u,u′ ∈U we have valmu(w
′
u′) = valw′

u′
(mu) = l−1, and for v,v′ ∈V we have valwv(m

′
v′) =

valm′
v′
(wv) = l−1. In particular, any pair in µ has (symmetric) value l−1. Hence there

is a blocking pair with respect to µ if and only if there is a pair with value at least

l. For u 6= u′ and v 6= v′ the pairs (mu,w′u′) and (wv,m′v′) can never be blocking pairs

as their value is l− 1. Furthermore for any pair of dummy nodes w′u and m′v we have

valm′v(w
′
u) = valw′u(m

′
v) = 0, thus no such pair can be a blocking pair either. This leaves

pairs of real nodes as the only candidates for blocking pairs. For non-dummy nodes mu

and wv we have valmu(wv) = valwv(mu) = 〈u,v〉 so (mu,wv) is a blocking pair if and only

if 〈u,v〉 ≥ l.



91

mu1

mu2

mu3

w′u1

w′u2

w′u3

wv1

wv2

wv3

u1 ◦1l−1 ◦0l−1

u2 ◦1l−1 ◦0l−1

u3 ◦1l−1 ◦0l−1

v1 ◦0l−1 ◦1l−1

v2 ◦0l−1 ◦1l−1

v3 ◦0l−1 ◦1l−1

0d ◦1l−1 ◦0l−1

0d ◦1l−1 ◦0l−1

0d ◦1l−1 ◦0l−1

m′v1

m′v2

m′v3

0d ◦0l−1 ◦1l−1

0d ◦0l−1 ◦1l−1

0d ◦0l−1 ◦1l−1

Figure 4.1. A representation of the reduction from maximum inner product to verifying
a stable matching

4.5.4 Checking a Stable Pair

In this section we give a reduction from the MaxInnProd problem to the problem

of checking whether a given pair is part of any or all stable matchings (StablePair),

showing that these questions are SETH-hard when d = c logn for some constant c. For

general preferences, both questions can be solved in time O(n2) [87, 70] and are known

to require quadratic time [114, 132, 68].

Theorem 4.5.3. Assuming SETH, for any ε > 0, there is a c such that determining

whether a given pair is part of any or all stable matchings in the Boolean d-attribute

model (BooleanAttributeStablePair) with d = c logn dimensions requires time Ω(n2−ε).

Proof. We again give a reduction from MaxInnProd with sets U,V ⊆ {0,1}d where

|U |= |V |= n and threshold l. We construct a matching market with 2n men and women

in the d′-attribute model with d′ = 7d +7(l−1)+18. Since d′ < 15d the theorem then

follows immediately from the SETH-hardness of MaxInnProd.



92

For simplicity, we will first describe the preference scheme, then provide weight

and attribute vectors that result in those preferences. For u ∈U , let mu be a man in the

matching market and for v ∈V we have a woman wv. We also have n−1 dummy men

mi : i = 1 . . .n−1 and n−1 dummy women w j : j = 1 . . .n−1. Finally, we have a special

man m∗ and special woman w∗. This special pair is the one we will test for stability. Let

the preferences be

mu :{wv : 〈u,v〉 ≥ l} � {w j}n−1
j=1 � w∗ � {wv : 〈u,v〉< l} ∀u ∈U

mi :{wv} � {w j}n−1
j=1 � w∗ ∀i ∈ {1 . . .n−1}

m∗ :w∗ � {wv} � {w j}n−1
j=1

wv :{mu : 〈u,v〉 ≥ l} � {mi}n−1
i=1 � m∗ � {mu : 〈u,v〉< l} ∀v ∈V

w j :{mu} � {mi}n−1
i=1 � m∗ ∀ j ∈ {1 . . .n−1}

w∗ :{mi}n−1
i=1 � {mu} � m∗

so that, for example, man mu corresponding to u ∈U will most prefer women

wv for some v ∈V with 〈u,v〉 ≥ l (in decreasing order of 〈u,v〉), then all of the dummy

women (equally), then the special woman w∗, and finally the remaining women wv (in

decreasing order of 〈u,v〉).

First suppose for some û ∈U and v̂ ∈ V we have 〈û, v̂〉 ≥ l and let this be the

pair with largest inner product. Now consider the deferred acceptance algorithm for

finding the woman-optimal stable matching. First, wv̂ will propose to mû and will be

accepted. The dummy women will propose to the remaining men corresponding to U .

Then any other woman wv will be accepted by either a dummy man or a man mu, causing

the dummy woman matched with him to move to a dummy man. In any case, all men



93

besides m∗ are matched to a woman they prefer over w∗, so when she proposes to them,

they will reject her. Thus w∗ will match with m∗. Since w∗ receives her least preferred

choice in the woman optimal stable matching, (m∗,w∗) is a pair in every stable matching.

Now suppose 〈u,v〉< l for every u ∈U ,v ∈V . Consider the deferred acceptance

algorithm for finding the man-optimal stable matching. First, the dummy men will

propose to the women corresponding to V and will be accepted. Then every man mu will

propose to the dummy women, but only n−1 of them can be accepted. The remaining

one will propose to w∗. When m∗ proposes to w∗, she rejects him, causing him to

eventually be accepted by the available woman wv. Thus m∗ will not match with w∗ in

any stable matching since she is his most preferred choice but he is not matched with

her in the man-optimal stable matching, so (m∗,w∗) is not a pair in any stable matching.

Section 4.5.4 demonstrates each of these cases.

Since the stable pair questions for whether (m∗,w∗) are a stable pair in any or all

stable matchings are equivalent with these preferences, this reduction works for both.

Finally, we claim the following vectors realize the preferences above for the

attribute model. We leave it to the reader to verify this. As in our other hardness

reductions, the weight and attribute vectors are identical for each participant.

mu : u7 ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ 06 ◦ 06

mi : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ 06

m∗ : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 06 ◦ 16

wv : v7 ◦ 07(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ (1◦05)

w j : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ (15 ◦0) ◦ 06

w∗ : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ (13 ◦03) ◦ (14 ◦02) ◦ (12 ◦04)



94

{mu}

{mi}

m∗

{wv}

{w j}

w∗

(a) A representative stable matching when

there is a pair (u,v) with 〈u,v〉 ≥ l

{mu}

{mi}

m∗

{wv}

{w j}

w∗

(b) A representative stable matching when

〈u,v〉< l for every pair (u,v)

Figure 4.2. A representation of the reduction from maximum inner product to checking
a stable pair

This reduction also has consequences on the existence of nondeterministic algo-

rithms for the StablePair problem assuming the Nondeterministic Strong Exponential

Time Hypothesis (NSETH)

NSETH stipulates that for CNF-sat there is no proof of unsatisfiability that can be

checked deterministically in time Ω(2(1−ε)n). See Chapter 6 for an extensive treatment

of NSETH.

Assuming NSETH, any problem that is SETH-hard at time T (n) under determin-

istic reductions either require T (n) time nondeterministically or co-nondeterministically,

i.e. either there is no proof that an instance is true or there is no proof that an instance is

false that can be checked in time faster than T (n). Note that all reductions in this chapter



95

are deterministic. In particular, the MaxInnProd problem does not have a O(N2−ε) co-

nondeterministic time algorithm for any ε > 0 assuming NSETH, since it has a simple

linear time nondeterministic algorithm.

Since the reduction of Theorem 4.5.3 is a simple reduction that maps a true

instance of MaxInnProd to a true instance of the StablePair problem, we can conclude

that the StablePair problem is also hard co-nondeterministically.

Corollary 4.5.1. Assuming NSETH, for any ε > 0, there is a c such that determining

whether a given pair is part of any or all stable matchings in the Boolean d-attribute

model with d = c logn dimensions requires co-nondeterministic time Ω(n2−ε).

We also have a reduction so that the given pair is stable in any or all stable

matchings if and only if there is not a pair of vectors with large inner product. This shows

that the StablePair problem is also hard nondeterministically.

Theorem 4.5.4. Assuming NSETH, for any ε > 0, there is a c such that determining

whether a given pair is part of any or all stable matchings in the Boolean d-attribute

model with d = c logn dimensions requires nondeterministic time Ω(n2−ε).

Proof. This reduction uses the same setup as the one in Theorem 4.5.3 except that we now

have n dummy men and women instead of n−1 and we slightly change the preferences

as follows:



96

mu :{wv : 〈u,v〉 ≥ l} � {w j}n
j=1 � w∗ � {wv : 〈u,v〉< l} ∀u ∈U

mi :{wv} � w∗ � {wj}n
j=1 ∀i ∈ {1 . . .n}

m∗ :w∗ � {wv} � {w j}n
j=1

wv :{mu : 〈u,v〉 ≥ l} � {mi}n
i=1 � m∗ � {mu : 〈u,v〉< l} ∀v ∈V

w j :{mu} � {mi}n
i=1 � m∗ ∀ j ∈ {1 . . .n}

w∗ :{mi}n
i=1 � {mu} � m∗

First suppose for some û ∈U and v̂ ∈V we have 〈û, v̂〉 ≥ l and let this be the pair

with largest inner product. Consider the deferred acceptance algorithm for finding the

man-optimal stable matching. First, some of the men corresponding to U will propose to

the women corresponding to V and at least mû will be accepted by wv̂. The remaining

men corresponding to U will be accepted by dummy women. The dummy men will

propose to the women corresponding to V but not all can be accepted. These rejected

dummy men will propose to w∗ who will accept one. Then when m∗ proposes to w∗ she

will reject him, as will the women corresponding to V , so he will be matched with a

dummy woman. Since m∗ and w∗ are not matched in the man optimal stable matching,

(m∗,w∗) is not a pair in any stable matching.

Now suppose 〈u,v〉< l for every u∈U ,v∈V and consider the deferred acceptance

algorithm for finding the woman-optimal stable matching. First, the dummy women will

propose to the men corresponding to U and will be accepted. Then every woman wv will

propose to the dummy men and be accepted. Since every man besides m∗ is matched

with a woman he prefers to w∗, when she proposes to them, she will be rejected, so she

will pair with m∗. Since w∗ receives her least preferred choice in the woman optimal



97

stable matching, (m∗,w∗) is a pair in every stable matching. Section 4.5.4 demonstrates

each of these cases.

We can amend the vectors from Theorem 4.5.3 as follows so that they realize the

changed preferences with the attribute model.

mu : u7 ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ 06 ◦ 06

mi : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ 06

m∗ : 07d ◦ 17(l−1) ◦ 17(l−1) ◦ 06 ◦ 06 ◦ 16

wv : v7 ◦ 07(l−1) ◦ 17(l−1) ◦ 06 ◦ 16 ◦ (1◦05)

w j : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ 16 ◦ (13 ◦03) ◦ 06

w∗ : 07d ◦ 17(l−1) ◦ 07(l−1) ◦ (13 ◦03) ◦ (14 ◦02) ◦ (12 ◦04)



98

{mu}

{mi}

m∗

{wv}

{w j}

w∗

(a) A representative stable matching when

there is a pair (u,v) with 〈u,v〉 ≥ l

{mu}

{mi}

m∗

{wv}

{w j}

w∗

(b) A representative stable matching when

〈u,v〉< l for every pair (u,v)

Figure 4.3. A representation of the reduction from maximum inner product to checking
a stable pair such that a true maximum inner product instance maps to a false stable pair
instance

We would like to point out that the results above on the hardness for (co-

)nondeterministic algorithms do not apply to Merlin-Arthur (MA) algorithms, i.e. algo-

rithms with access to both nondeterministic bits and randomness. Williams [148] gives

fast MA algorithms for a number of SETH-hard problems, and the same techniques also

yield a O(dn) time MA algorithm for the verification of a stable matching in the Boolean

attribute model with d attributes. We can obtain MA algorithms with time O(dn) for

finding stable matchings and certifying that a pair is in at least one stable matching by

first nondeterministically guessing a stable matching.



99

4.6 Other Succinct Preference Models

In this section, we provide subquadratic algorithms for other succinct preference

models, single-peaked and geometric, which are motivated by economics.

4.6.1 One Dimensional Single-Peaked Preferences

Formally, we say the men’s preferences over the women in a matching market

are single-peaked if the women can be ordered as points along a line (p(w1)< p(w2)<

· · ·< p(wn)) and for each man m there is a point q(m) and a binary preference relation

�m such that if p(wi)≤ q(m) then p(wi)�m p(w j) for j < i and if p(wi)≥ q(m) then

p(wi)�m p(w j) for j > i. Essentially, each man prefers the women that are closest to

his ideal point q(m). One example of a preference relation for m would be the distance

from q(m). If the women’s preferences are also single-peaked then we say the matching

market has single peaked preferences. Since these preferences only consist of the p and q

values and the preference relations for the participants, they can be represented succinctly

as long as the relations require subquadratic space.

Verifying a Stable Matching for Single-Peaked Preferences

Here we demonstrate a subquadratic algorithm for verifying if a given matching

is stable when the preferences of the matching market are single-peaked. We assume that

the preference relations can be computed in constant time.

Theorem 4.6.1. There is an algorithm to verify a stable matching in the single-peaked

preference model in O(n logn) time.

Proof. Let p(mi) be the point associated with man mi, q(mi) be mi’s preference point,

and �mi be mi’s preference relation. The women’s points are denoted analogously. We

assume that p(mi)< p(m j) if and only if i < j and the same for the women. Let µ be



100

the given matching we are to check for stability.

First, for each man m, we compute the intervals along the line of women which

includes all women m strictly prefers to µ(m). If this interval is empty, m is with his most

preferred woman and cannot be involved in any blocking pairs so we can ignore him. For

all nonempty intervals each endpoint is p(w) for some woman w. We also compute these

intervals for the women. Note that for any man m and woman w, (m,w) is a blocking

pair for µ if and only if m is in w’s interval and w is in m’s interval.

We will process each of the women in order from w1 to wn maintaining a balanced

binary search tree of the men who prefer that woman to their partners. This will allow

us to easily check if she prefers any of them by seeing if any elements in the tree are

between the endpoints of her interval. Initially this tree is empty. When processing a

woman w, we first add any man m whose interval begins with w to the search tree. Then

we check to see if w prefers any men in the tree. If so, we know the matching is not

stable. Otherwise, we remove any man m from the tree whose interval ends with w and

proceed to the next woman. Algorithm 5 provides pseudocode for this algorithm.

Computing the intervals requires O(n logn). Since we only insert each man into

the tree at most once, maintaining the tree requires O(n logn). The queries also require

O(logn) for each woman so the total time is O(n logn).



101

Algorithm 5: Single-Peaked Stable Matching Verification

for each woman w do

Create two empty lists w.begin and w.end

Use binary search to find the leftmost man m and rightmost man m′ that

w prefers to µ(w) if any (otherwise remove w)

Let w.s = p(m) and w.t = p(m′)

for each man m do
Use binary search to find the leftmost woman w and rightmost woman w′

that m prefers to µ(m) if any (otherwise ignore m)

Add m to w.begin and w′.end

Initialize an empty balanced binary search tree T

for i = 1 to n do

for m ∈ wi.begin do

T. insert(p(m))

if there are any points p(m) in T between wi.s and wi.t then
return (m,wi) is a blocking pair

for m ∈ wi.end do

T.delete(p(m))

return µ is stable

Remarks on Finding a Stable Matching for Single-Peaked Preferences

The algorithm in [21] relies on the observation that there will always be a pair or

participants who are each other’s first choice with narcissistic single-peaked preferences.

Thus a greedy approach where one such pair is selected and then removed works well.

However, this is not the case when we remove the narcissistic assumption. In fact, as

with the two-list case, Table 4.4 presents an example where no participant is matched



102

with their top choice in the unique stable matching. Note that the preferences for the men

and women are symmetric. The reader can verify that these preferences can be realized

in the single-peaked preference model using the orderings p(m1)< p(m2)< p(m3)<

p(m4) and p(w1) < p(w2) < p(w3) < p(w4) and that the unique stable matching is

{(m1,w4),(m2,w2),(m3,w3),(m4,w1)} where no participant receives their first choice.

Table 4.4. Single-peaked preferences where no participant receives their top choice in
the stable matching

Man Preference List

m1 w3 � w2 � w4 � w1

m2 w3 � w2 � w4 � w1

m3 w4 � w3 � w2 � w1

m4 w2 � w1 � w3 � w4

Woman Preference List

w1 m3 � m2 � m4 � m1

w2 m3 � m2 � m4 � m1

w3 m4 � m3 � m2 � m1

w4 m2 � m1 � m3 � m4

Also no greedy algorithm following the model inspired by [52] will succeed

for single-peak preferences because the preferences in Table 4.2 can be realized in

the single-peaked preference model using the orderings p(m1) < p(m2) < p(m3) and

p(w1)< p(w2)< p(w3).

4.6.2 Geometric Preferences

We say the men’s preferences over the women in a matching market are geometric

in d dimensions if each women w is defined by a location p(w) and for each man m there

is an ideal q(m) such that m prefers woman w1 to w2 if and only if ‖p(m)−q(w1)‖2
2 <

‖p(m)−q(w2)‖2
2, i.e. p(w1) has smaller euclidean distance from the man’s ideal than

p(w2). If the women’s preferences are also geometric we call the matching market

geometric. We further call the preferences narcissistic if p(x) = q(x) for every participant



103

x. Our results for the attribute model extend to geometric preferences.

Note that one-dimensional geometric preferences are a special case of single-

peaked preferences. As such, geometric preferences might be used to model preferences

over political candidates who are given a score on several (linear) policy areas, e.g.

protectionist vs. free trade and hawkish vs. dovish foreign policy.

Arkin et al. [16] also consider geometric preferences, but restrict themselves to

the narcissistic case. Our algorithms do not require the preferences to be narcissistic,

hence our model is more general. On the other hand, our lower bounds for large

dimensions also apply to the narcissistic special case. While Arkin et al. take special

care of different notions of stability in the presence of ties, we concentrate on weakly

stable matchings. Although we restrict ourselves to the StableMatching problem for the

sake of presentation, all lower bounds and verification algorithms naturally extend to

the StableRoommate problem. Since all proofs in this section are closely related those

for the attribute model, we restrict ourselves to proof sketches highlighting the main

differences.

Theorem 4.3.1 extends immediately to the geometric case without any changes in

the proof.

Corollary 4.6.1 (Geometric version of Theorem 4.3.1). There is an algorithm to find a

stable matching in the d-dimensional geometric model with at most a constant C distinct

values in time O(C2dn(d + logn)).

For the verification of a stable matching with real-valued vectors we use a standard

lifting argument.

Corollary 4.6.2 (Geometric version of Theorem 4.4.1). There is an algorithm to verify a

stable matching in the d-dimensional geometric model with real-valued locations and

ideals in time Õ(n2−1/2(d+1))



104

Proof. Let q ∈ Rd be an ideal and let a,b ∈ Rd be two locations. Define q′,a′,b′ ∈ Rd+1

as q′ = (q1, . . . ,qd,−1/2), a′ = (a1, . . . ,ad,∑
d
i=1 a2

i ) and b′ = (b1, . . . ,bd,∑
d
i=1 b2

i ).

We have 〈a′,q〉= 1/2∑
d
i=1 qi−1/2‖q−a‖2

2. Hence we get ‖q−a‖2
2 < ‖q−b‖2

2

if and only if 〈q′,a′〉 > 〈q′,b′〉, so we can reduce the StableMatching problem in the

d-dimensional geometric model to the d +1-attribute model.

For the Boolean case, we can adjust the proof of Theorem 4.4.3 by using a

threshold of parities instead of a threshold of conjunctions. The degree of the resulting

polynomial remains the same.

Corollary 4.6.3 (Geometric version of Theorem 4.4.3). In the geometric model with

n men and women, with locations and ideals in {0,1}d with d = c logn, there is a

randomized algorithm to decide if a given matching is stable in time Õ(n2−1/O(c log2(c)))

with error probability at most 1/3.

For lower bounds we reduce from the minimum Hamming distance problem

(MinHammDistance) which is SETH-hard with the same parameters as the MaxInnProd

problem [15]. The Hamming distance of two Boolean vectors is exactly their squared

euclidean distance, hence a matching market where the preferences are defined by

Hamming distances is geometric.

Problem 11 (MinHammDistance). For any d and input l, the minimum Hamming dis-

tance problem is to decide if two input sets U,V ⊆ {0,1}d with |U |= |V |= n have a pair

u ∈U, v ∈V such that ‖u− v‖2
2 < l.

Lemma 4.6.1 ([15]). Assuming SETH, for any ε > 0, there is a c such that solving the

MinHammDistance problem on d = c logn dimensions requires time Ω(n2−ε).

For the hardness of finding a stable matching, the construction from Theorem 4.5.1

works without adjustments.



105

Corollary 4.6.4 (Geometric version of Theorem 4.5.1). Assuming SETH, for any ε > 0,

there is a c such that finding a stable matching in the (Boolean) d-dimensional geometric

model with d = c logn dimensions requires time Ω(n2−ε).

For the hardness of verifying a stable matching, the construction is as follows.

Corollary 4.6.5 (Geometric version of Theorem 4.5.2). Assuming SETH, for any ε >

0, there is a c such that verifying a stable matching in the (Boolean) d-dimensional

geometric model with d = c logn dimensions requires time Ω(n2−ε).

Proof. Let U,V ⊆ {0,1}d be the inputs to the MinHammDistance problem and let l be

the threshold.

For every u ∈U , define a real man mu with both ideal and location as u◦0l and a

dummy woman w′u with ideal and location u◦1l . Symmetrically for v ∈V define wv with

v◦0l and m′v with v◦1l . The matching (mu,w′u) for all u ∈U and (wv,m′v) for all v ∈V

is stable if and only if there is there is no pair u,v with Hamming distance less than l.

The hardness results for checking a stable pair also translate to the geometric

model. In particular, since both variants of the proof extend to the geometric model we

have the same consequences for nondeterministic algorithms.

Corollary 4.6.6 (Geometric version of Theorem 4.5.3). Assuming SETH, for any ε > 0,

there is a c such that determining whether a given pair is part of any or all stable

matchings in the (Boolean) d-dimensional geometric model with d = c logn dimensions

requires time Ω(n2−ε).

Proof. We again reduce from the MinHammDistance problem. We assume without loss

of generality that d is even and the threshold l is exactly d/2+1, i.e. the instance is true

if and only if there are vectors u,v with Hamming distance at most d/2. We can reduce

to this case from any other threshold by padding the vectors.



106

We use the same preference orders as in the d-attribute model. The following

narcissistic instance realizes the preference order from Theorem 4.5.3. For a vector

u ∈ {0,1}d , u denotes its component-wise complement.

mu :(u◦u◦u◦u)3◦000000000

mi :012d ◦100000000

m∗ :012d ◦001111111

wv :(v◦ v◦ v◦ v)3 ◦000000000

w j :(02d ◦12d)3 ◦010000000

w∗ :(02d ◦12d)3 ◦101110000

Likewise the preference orders for Theorem 4.5.4 are achieved by the following

vectors.

mu :(u◦u◦u◦u)3◦00000000000

mi :012d ◦10000000000

m∗ :012d ◦00111111100

wv :(v◦ v◦ v◦ v)3 ◦00000000000

w j :(02d ◦12d)3 ◦01000000011

w∗ :(02d ◦12d)3 ◦10111000000



107

4.6.3 Strategic Behavior

With geometric and single-peaked preferences, we assume that the participants

are not allowed to misrepresent their location points. Rather they may only misrepresent

their preference ideal. As such, the results of this section do not apply when preferences

are narcissistic.

Theorem 4.6.2. There is no strategy proof algorithm to find a stable matching in the

geometric preference model.

Proof. We consider one-dimensional geometric preferences. Let the preference points

and ideals be as given in Table 4.5 which yield the depicted preference lists. As in the

proof for Theorem 4.3.3, there are two stable matchings: the man-optimal matching

{(m1,w3),(m2,w1),(m3,w2)}

and the woman-optimal matching

{(m1,w3),(m2,w2),(m3,w1)}

. However, if w2 changes her ideal to 5/3 then her preference list is m2 � m1 � m3. Now

there is a unique stable matching which is {(m1,w3),(m2,w2),(m3,w1)}, the woman-

optimal stable matching from the original preferences. Therefore, any mechanism that

does not always output the woman optimal stable matching can be manipulated by the

women to their advantage. Similarly, any mechanism that does not always output the

man-optimal matching could be manipulated by the men in some instances. Thus there is

no strategy-proof mechanism for geometric preferences.



108

Table 4.5. Geometric preferences that can be manipulated

Man Location (p) Ideal (q)

m1 1 7/3

m2 2 1

m3 3 5/3

Woman Location (p) Ideal (q)

w1 1 3

w2 2 7/3

w3 3 3

Man Preference List

m1 w2 � w3 � w1

m2 w1 � w2 � w3

m3 w2 � w1 � w3

Woman Preference List

w1 m3 � m2 � m1

w2 m2 � m3 � m1

w3 m3 � m2 � m1

Since one-dimensional geometric preferences are a special case of single-peaked

preferences the following corollary results directly from Theorem 4.6.2.

Corollary 4.6.7. There is no strategy proof algorithm to find a stable matching in the

single-peaked preference model.

4.7 Conclusion and Open Problems

We give subquadratic algorithms for finding and verifying stable matchings in

the d-attribute model and d-list model. We also show that, assuming SETH, one can only

hope to find such algorithms if the number of attributes d is bounded by O(logn).

For a number of cases there is a gap between the conditional lower bound and the

upper bound. Our algorithms with real attributes and weights are only subquadratic if the

dimension is constant. Even for small constants our algorithm to find a stable matching is

not tight, as it is not subquadratic for any d = O(logn). The techniques we use when the



109

attributes and weights are small constants do not readily apply to the more general case.

There is also a gap between the time complexity of our algorithms for finding a

stable matching and verifying a stable matching. It would be interesting to either close or

explain this gap. On the one hand, subquadratic algorithms for finding a stable matching

would demonstrate that the attribute and list models are computationally simpler than

the general preference model. On the other hand, proving that there are no subquadratic

algorithms would show a distinction between the problems of finding and verifying a

stable matching in these settings which does not exist for the general preference model.

Currently, we do not have a subquadratic algorithm for finding a stable matching even in

the 2-list case, while we have an optimal algorithm for verifying a stable matching for d

lists. This 2-list case seems to be a good starting place for further research.

Additionally it is worth considering succinct preference models for other com-

putational problems that involve preferences to see if we can also develop improved

algorithms for these problems. For example, the Top Trading Cycles algorithm [134]

can be made to run in subquadratic time for d-attribute preferences (when d is constant)

using the ray shooting techniques applied in this chapter to find participants’ top choices.

Chapter 4 is based on material as it appears in the following publications: Daniel

Moeller, Ramamohan Paturi, and Stefan Schneider. “Subquadratic algorithms for succinct

stable matching.” In International Computer Science Symposium in Russia, pp. 294-308.

Springer International Publishing, 2016. [110] The author of this dissertation was a

principal author of this publication. Marvin Künnemann, Daniel Moeller, Ramamohan

Paturi, and Stefan Schneider. “Subquadratic Algorithms for Succinct Stable Matching.”

arXiv preprint arXiv:1510.06452v5 (2016). [101] The author of this dissertation was a

principal author of this publication. Material from Chapter 4 is currently in submission

for publication, by Marvin Künnemann, Daniel Moeller, Ramamohan Paturi, and Stefan

Schneider. The author of this dissertation was a principal author of this publication. We



110

would like to thank Russell Impagliazzo, Vijay Vazirani, and the anonymous reviewers

for helpful discussions and comments on the material in Chapter 4.



Chapter 5

One-Dimensional Dynamic Program-
ming

In this chapter, we investigate the complexity of one-dimensional dynamic pro-

gramming, or more specifically, of the Least-Weight Subsequence (LWS) problem: Given

a sequence of n data items together with weights for every pair of the items, the task is

to determine a subsequence S minimizing the total weight of the pairs adjacent in S. A

large number of natural problems can be formulated as LWS problems, yielding obvious

O(n2)-time solutions.

In many interesting instances, the O(n2)-many weights can be succinctly rep-

resented. Yet except for near-linear time algorithms for some specific special cases,

little is known about when an LWS instantiation admits a subquadratic-time algorithm

and when it does not. In particular, no lower bounds for LWS instantiations have been

known before. In an attempt to remedy this situation, we provide a general approach

to study the fine-grained complexity of succinct instantiations of the LWS problem. In

particular, given an LWS instantiation we identify a highly parallel core problem that

is subquadratically equivalent. This provides either an explanation for the apparent

hardness of the problem or an avenue to find improved algorithms as the case may be.

More specifically, we prove subquadratic equivalences between the following

111



112

pairs (an LWS instantiation and the corresponding core problem) of problems: a low-rank

version of LWS and minimum inner product, finding the longest chain of nested boxes and

vector domination, and a coin change problem which is closely related to the knapsack

problem and (min,+)-Convolution. Using these equivalences and known SETH-hardness

results for some of the core problems, we deduce tight conditional lower bounds for the

corresponding LWS instantiations. We also establish the (min,+)-Convolution-hardness

of the knapsack problem. Furthermore, we revisit some of the LWS instantiations which

are known to be solvable in near-linear time and explain their easiness in terms of the

easiness of the corresponding core problems.

Dynamic programming (DP) is one of the most fundamental paradigms for

designing algorithms and a standard topic in textbooks on algorithms. Scientists from

various disciplines have developed DP formulations for basic problems encountered

in their applications. However, it is not clear whether the existing (often simple and

straightforward) DP formulations are in fact optimal or nearly optimal. Our lack of

understanding of the optimality of the DP formulations is particularly unsatisfactory

since many of these problems are computational primitives.

Interestingly, there have been recent developments regarding the optimality

of standard DP formulations for some specific problems, namely, conditional lower

bounds assuming the Strong Exponential Time Hypothesis (SETH) [82]. The longest

common subsequence (LongestCommonSubsequence) problem is one such problem

for which almost tight conditional lower bounds have been obtained recently. The

LongestCommonSubsequence problem is defined as follows:

Problem 12 (LongestCommonSubsequence). Given two strings x and y of length at most

n, compute the length of the longest string z that is a subsequence of both x and y.

The standard DP formulation for the LongestCommonSubsequence problem in-



113

volves computing a two-dimensional table requiring O(n2) steps. This algorithm is

only slower than the fastest known algorithm due to Masek and Paterson [105] by a

polylogarithmic factor. However, there has been no progress in finding more efficient

algorithms for this problem since the 1980s, which prompted attempts as early as in

1976 [13] to understand the barriers for efficient algorithms and to prove lower bounds.

Unfortunately, there have not been any nontrivial unconditional lower bounds for this

or any other problem in general models of computation. This state of affairs prompted

researchers to consider conditional lower bounds based on conjectures such as 3-sum

conjecture [61] and more recently based on ETH [85] and SETH [82]. Both ETH and

SETH proved to be useful to explain the exact complexity of several NP-complete prob-

lems (see the survey paper [103]). Surprisingly, Ryan Williams [142] has found a simple

reduction from the CNF-sat problem to the OrthogonalVectors problem which under

SETH leads to a matching quadratic lower bound for the OrthogonalVectors problem.

This in turn led to a number of conditional lower bound results for problems in P (includ-

ing LongestCommonSubsequence and related problems) under SETH [17, 2, 33, 4, 67].

Also see [149] for a recent survey and Chapter 2 for more detail.

The DP formulation of the LongestCommonSubsequence problem is perhaps

the conceptually simplest example of a two-dimensional DP formulation. In the stan-

dard formulation, each entry of an n× n table is computed in constant time. The

LongestCommonSubsequence problem belongs to the class of alignment problems which,

for example, are used to model similarity between gene or protein sequences. Con-

ditional lower bounds have recently been extended to a number of alignment prob-

lems [31, 17, 2, 33, 5].

In contrast, there are many problems for which natural quadratic-time DP formu-

lations compute a one-dimensional table of length n by spending O(n)-time per entry.

In this work, we investigate the optimality of such DP formulations and obtain new



114

(conditional) lower bounds which match the complexity of the standard DP formulations.

5.1 The Least-Weight Subsequence (LWS) Problem

In this paper, we investigate the optimality of the standard DP formulation of the

LWS problem. A classic example of an LWS problem is AirplaneRefueling [77].

Problem 13 (AirplaneRefueling). Given airport locations on a line, and a preferred

distance per hop k (in miles), we define the penalty for flying k′ miles as (k− k′)2. The

goal is then to find a sequence of airports starting at the first airport and terminating at

the last airport that minimizes the sum of the penalties.

We now define the LWS problem formally.

Problem 14 (LWS). We are given weights wi, j ∈ [−W,W ]∪{∞} for every 0≤ i < j ≤ n

and an arbitrary function g : N→ N. The LWS problem is to determine F [n] which is

defined by the following DP formulation.

F [0] = 0,

F [ j] = min
0≤i< j

g(F [i])+wi, j for j = 1, . . . ,n (5.1)

We typically consider succinct instantiations of LWS, where the input has sub-

quadratic size (typically Õ(n)) and the weights are a function of the input. In many cases

the input is a list of data items x0, . . . ,xn and wi, j is a function of xi and x j.

To formulate AirplaneRefueling as an LWS problem, we let xi be the location of

the ith airport, g be the identity function, and wi, j = (x j− xi− k)2.

In the definition of the LWS problem, we did not specify the encoding of the

problem (in particular, the type of data items and the representation of the weights



115

wi, j) so we can capture a larger variety of problems: it not only encompasses clas-

sical problems such as the PrettyPrinting problem due to Knuth and Plass [97], the

AirplaneRefueling problem [77] and the longest increasing subsequence (LIS) prob-

lem [60], but also the UnboundedSubsetSum problem [120, 32], which is a more general

CoinChange problem that is effectively equivalent to the UnboundedKnapsack problem,

the 1DKMeansClustering problem [69], finding longest R-chains for an arbitrary binary

relation R (ChainLWS), and many others. For a more complete list of problems definitions,

see Section 5.2 and Appendix A.

Under mild assumptions on the encoding of the data items and weights, any

instantiation of the LWS problems can be solved in time O(n2) using the definition for

determining the values F [ j], j = 1, . . . ,n in time O(n) each. However, the best known

algorithms for the LWS problems differ quite significantly in their time complexity. Some

problems including PrettyPrinting, AirplaneRefueling and LIS turn out to be solvable in

near-linear time, while no subquadratic algorithms are known for UnboundedKnapsack

or the general ChainLWS problem.

The main goal of the paper is to investigate the optimality of the LWS DP formu-

lation for various problems by proving conditional lower bounds.

5.1.1 Succinct LWS instantiations

In the extremely long presentation of an LWS problem, the weights wi, j are given

explicitly. This is however not a very interesting case from a computational point of view,

as the standard DP formulation takes linear time (in the size of the input) to compute

F [n]. In the example of the airplane refueling problem the size of the input is only

O(n) assuming that the values of the data items are bounded by some polynomial in

n. For such succinct representations, we ask if the quadratic-time algorithm based on

the standard LWS DP formulation is optimal. Our approach is to study several natural



116

succinct versions of the LWS problem (by specifying the type of data items and the

weight function1) and determine their complexity. We refer to Section 5.2 for examples

of succinct instantiations of the LWS problem.

5.1.2 Contributions and Results

The main contributions of our paper include a general framework for reducing

succinct LWS instantiations to what we call the core problems and proving subquadratic

equivalences between them. The subquadratic equivalences are interesting for two

reasons. First, they allows us to conclude conditional lower bounds for certain LWS

instantiations, where previously no lower bounds are known. Second, subquadratic

(or more general fine-grained) equivalences are more useful since they let us translate

hardness as well as easiness results.

Our results include tight (up to subpolynomial factors) conditional lower bounds

for several LWS instantiations with succinct representations. These instantiations include

the CoinChange problem, low rank versions of the LWS problem (LowRankLWS), and the

ChainLWS problems. Our results are somewhat more general. We propose a factorization

of the LWS problem into a core problem and a fine-grained reduction from the LWS

problem to the core problem. The idea is that core problems (which are often well-know

problems) capture the hardness of the LWS problem and act as a potential barrier for more

efficient algorithms. While we do not formally define the notion of a core problem, we

identify several core problems which share several interesting properties. For example,

they do not admit natural DP formulations and are easy to parallelize. In contrast, the

quadratic-time DP formulation of LWS problems requires the entries F [i] to be computed

in order, suggesting that the general problem might be inherently sequential.

The reductions between LWS problems and core problems involve a natural

1In all our applications, the function g is the trivial identity function.



117

intermediate problem, which we call the Static-LWS problem. We first reduce the LWS

problem to the Static-LWS problem in a general way and then reduce the Static-LWS

problem to a core problem. The first reduction is divide-and-conquer in nature and is

inherently sequential. The latter reduction is specific to the instantiation of the LWS

problem. The Static-LWS problem is easy to parallelize and does not have a natural DP

formulation. However, the problem is not necessarily a natural problem. The Static-LWS

problem can be thought of as a generic core problem, but it is output-intensive.

In the other direction, we show that many of the core problems can be reduced

to the corresponding LWS instantiations thus establishing an equivalency between LWS

instantiations and their core problems. This equivalence enables us to translate both

the hardness and easiness results (i.e., the subquadratic-time algorithms) for the core

problems to the corresponding LWS instantiations.

The first natural succinct representation of the LWS problem we consider is the

LowRankLWS problem, where the weight matrix W = (wi, j) is of low rank and thus

representable as W = L ·R where L and RT are (n×no(1))-matrices. For this low rank

LWS problem, we identify the minimum inner product problem (IntegerMinInnProd)

as a suitable core problem. It is only natural and not particularly surprising that

IntegerMinInnProd can be reduced to the low-rank LWS problem which shows the SETH-

hardness of the low-rank LWS problem. The other direction is more surprising: Inspired

by an elegant trick of Vassilevska Williams and Williams [150], we are able to show

a subquadratic-time reduction from the (highly sequential) low-rank LWS problem to

the (highly parallel) IntegerMinInnProd problem. Thus, the very compact problem

IntegerMinInnProd problem captures exactly the complexity of the LowRankLWS prob-

lem (under subquadratic reductions).

We also show that the coin change problem is subquadratically equivalent to

the (min,+)-Convolution problem. In the coin change problem, the weight matrix W



118

is succinctly given as a Toeplitz matrix. At this point, the conditional hardness of

the (min,+)-Convolutionproblem is unknown. Only very recently and independent

of our work, a detailed treatment of Cygan et al. [49] considers quadratic-complexity

of (min,+)-Convolution as a hardness assumption and discusses its relation to more

established assumptions. The quadratic-time hardness of the (min,+)-Convolution

problem would be very interesting, since it is known that the (min,+)-Convolution

problem is reducible to the 3-sum problem and the APSP problem (see also [49]). How-

ever, recent results give surprising subquadratic-time algorithms for special cases of

(min,+)-Convolution [39]. If these subquadratic-time algorithms extend to the general

(min,+)-Convolution problem, our equivalence result also provides a subquadratic-time

algorithm for the coin change problem and the closely related unbounded knapsack

problem. Our reductions also give, as a corollary, a quadratic-time (min,+)-Convolution-

based lower bound for the bounded case of knapsack. We remark that independently of

our results, [49] gave randomized subquadratic equivalences of (min,+)-Convolution to

UnboundedKnapsack (while we give deterministic reductions) and (bounded) Knapsack

(where we only give a (min,+)-Convolution-based lower bound).

We next consider the ChainLWS problem: here, we search for the longest subse-

quence (chain) in the input sequence such that all adjacent pairs in the subsequence are

contained in some binary relation R. We show that for any binary relation R satisfying

certain conditions the chaining problem is subquadratically equivalent to a correspond-

ing (highly parallel) selection problem. As corollaries, we get equivalences between

finding the longest chain of nested boxes (NestedBoxes) and VectorDomination as well

as between finding the longest subset chain (SubsetChain) and the orthogonal vectors

(OrthogonalVectors) problem. Interestingly, these results have algorithmic implica-

tions: known algorithms for low-dimensional VectorDomination and low-dimensional

OrthogonalVectors translate to faster algorithms for low-dimensional NestedBoxes and



119

Table 5.1. Summary of our results on LWS

Name Weights Equivalent Core Reference
CoinChange Toeplitz matrix: (min,+)-Convolution Theorem 5.5.1

wi, j = w j−i
Remark: Subquadratically equivalent to UnboundedKnapsack

LowRankLWS Low rank representation: IntegerMinInnProd Theorem 5.4.1
wi, j = 〈σi,µ j〉

ChainLWS(R) matrix induced by R: Selection(R) Theorem 5.6.1
wi, j = w j if R(xi,x j) and ∞ o/w Theorem 5.6.2
Remark: Results below are corollaries.

NestedBoxes wi, j =−1 if B j ≤ Bi VectorDomination
SubsetChain wi, j =−1 if Si ⊆ S j OrthogonalVectors

Table 5.2. Near-linear time algorithms following from the proposed framework

Name Weights Reducible to Reference
LIS matrix induced by R<: Sorting [60],

wi, j =−1 if xi < x j Observation 5.7.1

UnboundedSubsetSum Toeplitz {0,∞} matrix: Convolution [32],
wi, j = w j−i ∈ {0,∞} Observation 5.7.2

ConcaveLWS concave matrix: SMAWK [77, 65, 140],
wi, j +wi′, j′ ≤ wi′, j +wi, j′ Observation 5.7.3
for i≤ i′ ≤ j ≤ j′

SubsetChain for small universe size.

Table 5.1 lists the LWS succinct instantiations (as discussed above) and their

corresponding core problems. All LWS instantiations and core problems considered in

this paper are formally defined in Section 5.2.

Finally, we revisit classic problems including the longest increasing subsequence

problem, the unbounded subset sum problem and the concave LWS problem and analyze

the Static-LWS instantiations to immediately infer that the corresponding core problem

can be solved in near-linear time. Table 5.2 gives an overview of some of the problems

we look at in this context.



120

5.1.3 Related Work

LWS has been introduced by Hirschberg and Lamore [77]. If the weight func-

tion satisfies the quadrangle inequality2 formalized by Yao [151], one obtains the

ConcaveLWS problem, for which they give an O(n logn)-time algorithm. Subsequently,

improved algorithms solving ConcaveLWS in time O(n) were given [140, 65]. This

yields a fairly large class of weight functions (including, e.g., the pretty printing and

airplane refueling problems) for which linear-time solutions exist. To generalize this

class of problems, further works address convex weight functions3 [64, 109, 94] as

well as certain combinations of convex and concave weight functions [57] and provide

near-linear time algorithms. For a more comprehensive overview over these algorithms

and further applications of the LWS problem, we refer the reader to Eppstein’s PhD

thesis [58].

Apart from these notions of concavity and convexity, results on the succinct LWS

problems are typically more scattered and problem-specific (see, e.g., [60, 97, 32, 69];

furthermore, a closely related recurrence to LWS pops up when solving BitonicTSP [53]).

An exception to this rule is a study of the parallel complexity of LWS [66].

5.1.4 Organization

Section 5.2 defines or redefines all the relevant LWS, core, and intermediate

problems. Section 5.3 gives a general reduction from LWS instantiations to Static-LWS

that is independent of the representation of the weight matrix. Section 5.4 contains

the result on low-rank LWS. Section 5.5 proves the subquadratic equivalence of the

coin change problem and (min,+)-Convolution, while Section 5.6 discusses chaining

problems and their corresponding selection (core) problem. Our results on near-linear

2See Section 5.2 for definitions.
3A weight function is convex if it satisfies the inverse of the quadrangle inequality.



121

time algorithms are given in Section 5.7.

5.2 Preliminaries

In this section, we state the notational conventions and list or recall the main

problems considered in this chapter.

For a problem P, we write T P for its time complexity. We generally assume the

word-RAM model of computation with word size w = Θ(logn). For most problems

defined in this paper, we consider inputs to be integers in the range [−W,W ] where W fits

in a constant number of words4. For vectors, we use d for the dimension and generally

assume d = no(1).

5.2.1 Succinct LWS Instantiations

In the definition of LWS (Appendix A.3) we did not fix the encoding of the

problem (in particular the representation of the weights wi, j and the function g). Assuming

that g and the weights can be determined in Õ(1) and that W = poly(n), this problem

can naturally be solved in time Õ(n2), by evaluating the central recurrence for each

j = 1, . . . ,n – this takes Õ(n) time for each j, since we take the minimum over at

most n expressions that can be evaluated in time Õ(1) by accessing the previously

computed entries F [0], . . . ,F [ j− 1] as well as computing g. In all our applications, g

will be the identity function, hence it will suffice to define the type of data items and the

corresponding weight matrix. Throughout this paper, whenever we fix a representation

of the weight matrix W = (wi, j)i, j, we denote the corresponding problem LWS(W).

We first list problems considered in this paper that can be expressed as an LWS

instantiation. At this point, we typically give the most natural formulations of these prob-

lems – the corresponding definitions as LWS instantiations are given in the corresponding

4For the purposes of our reductions, even values up to W = 2no(1)
would be fine.



122

sections.

We start off with a natural succinct low-rank version of LWS.

Problem 15 (LowRankLWS). LowRankLWS is the LWS problem where the weight matrix

W is of rank d� n. The input is given succinctly as two matrices A and B, which are

(n×d)- and (d×n)-matrices respectively, and W = A ·B.

Alternatively, LowRankLWS may be interpreted in the following way: There are

places 0,1, . . . ,n, each of which is equipped with an in- and an out-vector. The cost of

going from place i to j is then defined as the inner product of the out-vector of i with the

in-vector of j, and the task is to compute the minimum-cost monotonically increasing

path to reach place n starting from 0. In Section 5.4, we discuss the complexity of

LowRankLWS.

We consider the following coin change problem and variations of Knapsack.

Problem 16 (CoinChange). Given a weight sequence x1, . . . ,xn with xi ∈ [−W,W ]∪{∞},

that is the coin with value i has weight xi. Find the weight of the multiset of denominations

I such that ∑i∈I i = n and the sum of the weights ∑i∈I xi is minimized.

We can restate CoinChange as an LWS instantiation where wi, j = x j−i.

The unbounded Knapsack problem is a close relative of CoinChange.

Problem 17 (UnboundedKnapsack). We are given a sequence of profits p = (p1, . . . , pn)

with pi ∈ [0,W ], that is the item of size i has profit pi. Find the total profit of the multiset

of indices I such that ∑i∈I i≤ n and the total profit ∑i∈I pi is maximized.

Note that if we replace multiset by set in the above definition, we obtain the

bounded version of the problem, which we denote by Knapsack.

We remark that our perspective on CoinChange and UnboundedKnapsack (as

well as UnboundedSubsetSum below) using LWS is slightly different than many classical



123

accounts of Knapsack: We define the problem size as the budget size instead of the

number of items, thus our focus is on pseudo-polynomial time algorithms for the typical

formulations of these problems.

Note that we state the coin change problem as allowing positive or negative

weights, but UnboundedKnapsack only allows for positive profits. Furthermore, the

CoinChange problem is a minimization problem, while UnboundedKnapsack is a maxi-

mization problem. For CoinChange, the maximization problem is trivially equivalent as

we can negate all weights. Furthermore, we can freely translate the range of the weights in

the coin change problem by defining w′i = i ·M+wi for all i and sufficiently large or small

M. The most significant difference between CoinChange and UnboundedKnapsack is

that for CoinChangethe indices have to sum to exactly n, while for UnboundedKnapsack

n is only an upper bound.

We will encounter an important generalization of the two problems above, defined

as follows.

Problem 18 (oiCoinChange). The output-intensive version of CoinChange is to deter-

mine, given an input to CoinChange, the weight of the optimal multiset such that the

denominations sum up to j for all 1≤ j ≤ n.

It is easy to see that oiCoinChange is equivalent to computing all values F [ j] for

both CoinChange and UnboundedKnapsack, and is therefore at least as hard as either of

them. We discuss the complexity of the Knapsack variants above in Section 5.5.

One Knapsack variant that turns out to be solvable in suquadratic time is the

unbounded subset sum problm discussed in Section 5.7, we will revisit this problem

together with other near-linear time algorithms.

Problem 19 (UnboundedSubsetSum). Given a subset S⊆ [n], determine whether there

is a multiset of elements of S that sums up to exactly n.



124

We also discuss problems where the goal is to find the longest chain among data

items, where the notion of a chain is defined by some binary relation R. We first give the

definition of the general problem which is parameterized by R.

Problem 20 (ChainLWS). Fix a set X of objects and a relation R⊆ X×X. The Weighted

Chain Least-Weight Subsequence Problem for R, denoted ChainLWS(R), is the following

problem: Given data items x0, . . . ,xn ∈X, weights y1, . . . ,yn−1 ∈ [−W,W ], find the weight

of the increasing sequence i0 = 0< i1 < i2 < .. . < ik = n such that for all j with 1≤ j≤ k

the pair (xi j−1,xi j) is in the relation R and the weight ∑
k−1
j=1 yi j is minimized.

ChainLWS is a subclass of LWS where we restrict the input to be a sequence of

data items, and wi, j = y j if (xi,x j) ∈ R and wi, j = ∞ otherwise.

The following problems are specializations of this problem for different relations.

Problem 21 (NestedBoxes). Given n boxes in d dimensions, given as non-negative, d-

dimensional vectors (b1, . . . ,bn), find the longest chain such that each box fits into the

next (without rotation). We say box that box a fits into box b if for all dimensions 1≤ i≤ d,

ai ≤ bi.

Problem 22 (SubsetChain). Given n sets from a universe U of size d, given as Boolean,

d-dimensional vectors (b1, . . . ,bn), find the longest chain such that each set is a subset of

the next.

Note that SubsetChain is a special case of NestedBoxes.

The complexity of ChainLWS problems is discussed in Section 5.6.

A number of ChainLWS instances have previously known near-linear time algo-

rithms are are discussed in Section 5.7.

Problem 23 (LIS). Given a sequence of n integers x1, . . . ,xn, compute the length of the

longest subsequence that is strictly increasing.



125

We also briefly discuss the following LWS instatiation that allows for near-linear

time algorithms.

Problem 24 (ConcaveLWS). Given an LWS instance in which the weights satisfy the

quadrangle inequality

wi, j +wi′, j′ ≤ wi′, j +wi, j′ for i≤ i′ ≤ j ≤ j′,

solve it. The weights are not explicitly given, but each wi, j can be queried in constant

time.

5.2.2 Core Problems and Hypotheses

We characterize the complexity of LWS by showing subquadratic equivalences to

core problems. These core problems are typically better understood than the LWS instan-

tiations mentioned above, in particular from a conditional lower bound perspective. They

also differ from LWS in that the problems are not inherently sequential. Even stronger, the

core problems have a very small (subpolynomial) nondeterminstic complexity. Our key

results will be subquadratic equivalences between succinct LWS instantiations and corre-

sponing core problems. For an overview of known conditional lower bounds, including

the core problems mentioned in this chapter, see Chapter 2.

Recall the definition of OrthogonalVectors.

Problem 25 (OrthogonalVectors). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d , deter-

mine if there is i, j ∈ [n] satisfying 〈ai,b j〉= 0.

For OrthogonalVectors (and the related problems below) we assume d = no(1).

Thus the naive algorithm solves OrthogonalVectors in time O(n2 ·d) = O(n2+o(1)).

We will rely on the SETH-hardness of OrthogonalVectors proved in Section 2.6.



126

We consider the following generalizations of OrthogonalVectors and also con-

sider them core problems. Some of these problems have already been discussed in

Section 2.7.

Problem 26 (IntegerMinInnProd). Given a1, . . . ,an,b1, . . . ,bn ∈ [−W, ,W ]d and a natu-

ral number r ∈ N, determine if there are i, j satisfying 〈ai,b j〉 ≤ r.

In Section 5.4 we show subquadratic equivalence between IntegerMinInnProd

and LowRankLWS.

Problem 27 (SetContainment). Given sets a1, . . . ,an,b1, . . . ,bn ⊆ [d] given as vectors

in {0,1}d determine if there are i, j such that ai ⊆ b j.

We also recall the VectorDomination problem discussed in Chapter 3.

Problem 28 (VectorDomination). Given a1, . . . ,an,b1, . . . ,bn ∈ Rd determine if there is

i, j such that ai ≤ b j component-wise.

Note that SetContainment is a special case of VectorDomination and computa-

tionally equivalent to OrthogonalVectors, as 〈a,b〉= 0 if and only if a⊆ b (in this slight

misuse of notation we think of the Boolean vectors a,b as sets and let b̄ denote the

complement of b).

In Section 5.6 we show subquadratic equivalences between VectorDomination

and NestedBoxes, as well as between SetContainment and SubsetChain.

Since subquadratic solutions to any of these problems trivially give a subquadratic

solution to OrthogonalVectors, these problems are also quadratic-time SETH-hard. How-

ever, the converse does not necessarily hold. In particular, the strongest currently known

upper bounds differ: while for OrthogonalVectors and SetContainment for small dimen-

sion d = c · log(n), an n2−1/O(logc)-time algorithm is known [7], for VectorDomination

the best known algorithm runs only in time n2−1/O(c log2 c) [80, 38].



127

Another fundamental quadratic-time problem is (min,+)-Convolution, discussed

in Section 2.8.3.

Problem 29 ((min,+)-Convolution). Given n-dimensional vectors a = (a0, . . . ,an−1),

b = (b0, . . . ,bn−1) ∈ [−W,W ]n for some W = poly(n), the (min,+)-Convolution a∗b is

defined by

(a∗b)k = min
0≤i, j<n:i+ j=k

ai +b j for all 0≤ k ≤ 2n−2.

As opposed to the classical convolution, which we denote as a~b, solvable in

time O(n logn) using FFT, no strongly subquadratic algorithm for (min,+)-Convolution

is known. Compared to OrthogonalVectors, we have less support for believing that

no O(n2−ε)-time algorithm for (min,+)-Convolutionexists. In particular, interesting

special cases can be solved in subquadratic-time [39] and there are subquadratic-time co-

nondeterministic and nondeterministic algorithms [30, 36]. At the same time, breaking

this long-standing quadratic-time barrier is a prerequisite for progress on refuting the

3-sum and APSP conjectures. (min,+)-Convolution is therefore an interesting target

particularly for proving subquadratic equivalences, since both positive and negative

resolutions of this open question appear to be reasonable possibilities.

For LWS instantiatiations where near-linear time algorithms are already known

we also identify corresponding core problems in Section 5.7. None of the algorithmic

results are new, but the core problems do give a new perspective on these problems.

5.2.3 Intermediate Problems

Our reductions from LWS instantiations to core problems go through intermediate

problems that share some of the characteristics of core problems, as well as some of the

characteristics of LWS. In particular, these problems are naturally parallelizable and their



128

brute-force algorithm is already quadratic time, similar to core problems. On the other

hand their definitions are closely related to the definition of LWS. Other than core prob-

lems, intermediate problems are not decision problems but ask to compute some linear

sized output. In many instance, the intermediate problem is not a natural problem. Note

that (min,+)-Convolution shares many of the same properties as intermediate problems,

with the exception that in our result it does not actually constitute an intermediate step

but acts as the well-studied problem we relate the computation complexity of LWS to.

We define a generic intermediate problem called Static-LWS.

Problem 30 (Static-LWS(W)). Fix an instance of LWS(W). Given intervals of indices

I := {a+ 1, . . . ,a+N} and J := {a+N + 1, . . . ,a+ 2N} with a,N such that I,J ⊆ [n],

together with the values F [a+ 1], . . . ,F [a+N], the Static Least-Weight Subsequence

Problem (Static-LWS) asks to determine

F ′[ j] := min
i∈I

F [i]+wi, j for all j ∈ J.

Static-LWS has appeared implicitly in previous work. For example, the SMAWK

problem [12] of finding the column minima in a totally monotone matrix is the instantia-

tion of Static-LWS obtained from ConcaveLWS, and used in that capacity in [65].

Some of the instantiations of Static-LWS are natural problems. For example,

the Static-LWS instantiation that corresponds to LowRankLWS can easily be seen to be

equivalent to AllInnProd.

Problem 31 (AllInnProd). Given a1, . . . ,an ∈ [−W,W ]d and b1, . . . ,bn ∈ [−W,W ]d , de-

termine for all j ∈ [n], the value mini∈[n]〈ai,b j〉.



129

5.3 Static LWS

In this section we give a reduction from LWS(W) to Static-LWS(W) that is

independent of the weight matrix W and therefore independent of the succinct LWS

instantiations we consider throughout this paper. This reduction is a key step in our

reductions from LWS to their corresponding core problems.

The reduction is a divide-and-conquer scheme that divides the LWS problem into

two subproblems of half the size each and Static-LWS to combine the two. Crucially, the

two subproblems have to be solved sequentially. The reduction therefore captures the

sequential nature of the LWS problem, while Static-LWS captures a parallelizable part of

the problem.

This reduction has appeared implicitly in previous work on LWS [77]. In par-

ticular, the reduction of ConcaveLWS to the SMAWK problem by Galil and Park [65]

can be thought of as a variant of this reduction specialized to the concave case to avoid

log-factors.

Lemma 5.3.1 (LWS(W)≤2 Static-LWS(W)). For any choice of W, if Static-LWS(W)

can be solved in time O(N2−ε) for some ε > 0, then LWS(W) can be solved in time

Õ(n2−ε).

Proof. In what follows, we fix LWS as LWS(W) and Static-LWS as Static-LWS(W).

We define the subproblem S({i, . . . , j},(ti, . . . , t j)) that given an interval spanned

by 1 ≤ i ≤ j ≤ n and values tk = min0≤k′<i F [k′] +wk′,k for each point k ∈ {i, . . . , j},

computes all values F [k] for k ∈ {i, . . . , j}. Note that a call to S([n],(w0,1, . . . ,w0,n))

solves the LWS problem, since F [0] = 0 and thus the values of tk,k ∈ [n] are correctly

initialized.

We solve S using Algorithm 6.



130

Algorithm 6: Reducing LWS to Static-LWS, S
input: {i, . . . , j},(ti, . . . , t j)
if i = j then

return F [i]← ti
m← d j−i

2 e
(F [i], . . . ,F [i+m−1])← S({i, . . . , i+m−1},(ti, . . . , ti+m−1))

solve Static-LWS on the subinstance given by I := {i, . . . , i+m−1} and
J := {i+m, . . . , i+2m−1}

// obtains values F ′[k] = mini≤k′<i+m F [k′]+wk′,k for

k = i+m, . . . , i+2m−1

t ′k←min{tk,F ′[k]} for all k = i+m, . . . , i+2m−1
(F [i+m], . . . ,F [i+2m−1])← S({i+m, . . . , i+2m−1},(t ′i+m, . . . , t

′
i+2m−1))

if j = i+2m then
F [ j] := min{t j,mini≤k< j F [k]+wk, j}

return (F [i], . . . ,F [ j])

We briefly argue correctness, using the invariant that tk = min0≤k′<i F [k′]+wk′,k

in every call to S. If S is called with i = j, then the invariant yields ti = min0≤k′<i F [k′]+

wk′,i = F [i], thus F [i] is computed correctly. For the first recursive call, the invariant is

fulfilled by assumption, hence the values (F [i], . . . ,F [i+m−1]) are correctly computed.

For the second recursive call, we note that for k = i+m, . . . , i+2m−1, we have

t ′k = min{tk,T ′[k]}= min{ min
0≤k′<i

F [k′]+wk′,k, min
i≤k′<i+m

F [k′]+wk′,k} (5.2)

= min
0≤k′<i+m

F [k′]+wk′,k (5.3)

Hence the invariant remains satisfied. Thus, the values (F [i+m], . . . ,F [i+2m−1]) are

correctly computed. Finally, if j = i+2m, we compute the remaining value F [ j] correctly,

since t j = min0≤k<i F [k]+wk, j by assumption.

To analyze the running time T S(n) of S on an interval of length n := j− i+ 1,

note that each call results in two recursive calls of interval lengths at most n/2. In each



131

call, we need an additional overhead that is linear in n and TStatic-LWS(n/2). Solving the

corresponding recursion T S(n)≤ 2T S(n/2)+TStatic-LWS(n/2)+O(n), we obtain that an

O(N2−ε)-time algorithm Static-LWS, with 0< ε < 1 yields T LWS(n)≤ T S(n)=O(n2−ε).

Similarly, an O(N logc N)-time algorithm for Static-LWS would result in an O(n logc+1 n)-

time algorithm for LWS.

This reduction has appeared implicitly in previous work on LWS [77]. In par-

ticular, the reduction of ConcaveLWS to the SMAWK problem by Galil and Park [65]

can be thought of as a variant of this reduction specialized to the concave case to avoid

log-factors.

5.4 Low Rank LWS

In this section we prove the first equivalence between an instantiation of LWS and

a core problem.

Let us first analyze the following canonical succinct representation of a low-rank

weight matrix W = (wi, j)i, j: If W is of rank d� n, we can write it more succinctly as

W = A ·B, where A and B are (n×d)- and (d×n) matrices, respectively. We can express

the resulting natural LWS problem equivalently as follows.

Problem 32 (LowRankLWS). We define the following LWS instantiation LowRankLWS=

LWS(WLOWRANK).

Data items: out-vectors µ0, . . . ,µn−1 ∈ [−W,W ]d , in-vectors σ1, . . . ,σn ∈ [−W,W ]d

Weights: w(i, j) = 〈µi,σ j〉 for 0≤ i < j ≤ n

In this section, we show that this problem is equivalent, under subquadratic

reductions, to the following non-sequential problem.

Problem 33 (IntegerMinInnProd). Given a1, . . . ,an,b1, . . . ,bn ∈ [−W,W ]d and a natural

number r ∈ N, determine if there is a pair i, j satisfying 〈ai,b j〉 ≤ r.



132

This is interesting for a number of reasons. For one, IntegerMinInnProd is a

fairly natural problem and, as opposed to LowRankLWS it is not inherently sequential in

its definition. We understand IntegerMinInnProd comparably well both from an upper

and from a lower bound perspective. Using ray shooting data structures [106] we can

solve IntegerMinInnProd in strongly subquadratic time if d in constant. At the same

time, if d = ω(logn), the problem is SETH-hard at time n2. By showing subquadratic

equivalence between IntegerMinInnProd and LowRankLWS, we can conclude both these

results, as well as any future improvements, for LowRankLWS.

We first give a simple reduction from IntegerMinInnProd that along the way

proves quadratic-time SETH-hardness of LowRankLWS.

Lemma 5.4.1. It holds that

T IntegerMinInnProd(n,d,W )≤ T LowRankLWS(2n+1,d +2,dW )+O(nd)

Proof. Given a1, . . . ,an,b1, . . . ,bn ∈ [−W,W ]d , let O = (0, . . . ,0) ∈ Nd be the all-zeroes

vector and define the following in- and out-vectors

µ0 = (dW,0,O), σ2n+1 = (dW,dW,O),

µi = (0,dW,ai), σi = (0,0,O), for i = 1, . . . ,n,

µn+ j = (0,0,O), σn+ j = (dW,0,b j), for j = 1, . . . ,n.

To prove correctness, we show that in the constructed LowRankLWS instance, we have

F [2n+1] = mini, j〈ai,b j〉, from which the results follows immediately.

We use the following observations:

• 〈µ0,σn+ j〉= (dW )2 ≥maxi, j〈ai,b j〉

• 〈µi,σn+ j〉= 〈ai,b j〉



133

• 〈µn+ j′,σn+ j〉= 0

for all 1≤ i, j ≤ n and j′ ≤ j.

Inductively, we have F [i] = 0 for i = 1, . . . ,n, since 〈µi′,σi〉= 0 for all 0≤ i′ <

i≤ n. Similarly, for j = 1, . . . ,n one can inductively show that

F [n+ j] = min
1≤i≤n, j′≤ j

〈ai,b j′〉

Finally, using

• 〈µ0,σ2n+1〉= (dW )2 ≥maxi, j〈ai,b j〉 and F [0] = 0

• 〈µi,σ2n+1〉= (dW )2 ≥maxi, j〈ai,b j〉 and F [i] = 0 for i = 1, . . . ,n

• 〈µn+ j,σ2n+1〉= 0 and F [n+ j] = min1≤i≤n,1≤ j′≤ j〈ai,b j′〉

for all j = 1, . . . ,n, we can finally determine F [2n+1] = mini, j〈ai,b j〉.

To prove the other direction, we will use the quite general approach to compute

the sequential LWS problem by reducing to Static-LWS (Lemma 5.3.1)

For the special case of LowRankLWS, it is straightforward to see that the static

version boils down to the following natural reformulation.

Problem 34 (AllInnProd). Given a1, . . . ,an ∈ [−W,W ]d and b1, . . . ,bn ∈ [−W,W ]d , de-

termine for all j ∈ [n], the value mini∈[n]〈ai,b j〉. (Again, we typically assume that

d = no(1) and W = 2no(1)
.)

Lemma 5.4.2 (Static-LWS(WLOWRANK)≤2 AllInnProd). We have

TStatic-LWS(WLOWRANK)(n,d,W )≤ TAllInnProd(n,d +1,nW )+O(nd).



134

Proof. Consider Static-LWS(WLOWRANK). Let I = {a+ 1, . . . ,a+N}, J = {a+N +

1, . . . ,a+2N} and values F [a+1], . . . ,T [a+N] be given. To determine

F ′[ j] = min
i∈I

F [i]+wi, j

for all j ∈ J, it is sufficient to solve the AllInnProd problem where the input vectors are

given by aa+1, . . . ,aa+N ∈ [nW,nW ]d+1 and ba+N+1, . . . ,ba+2N ∈ [nW,nW ]d+1 defined

by

ai := (µi,F [i]) b j = (σ j,1), for all i ∈ I, j ∈ J,

since then

〈ai,b j〉= F [i]+ 〈µi,σ j〉= F [i]+wi, j

The claim immediately follows (note that |F [i]| ≤ nW ).

Finally, inspired by an elegant trick of [150], we reduce the AllInnProd problem

to the IntegerMinInnProd problem.

Lemma 5.4.3 (AllInnProd≤2 IntegerMinInnProd). We have

TAllInnProd(n,d,W )≤ O(n ·T IntegerMinInnProd(
√

n,d +3,ndW 2) · log2 nW ).

Proof. We first observe that we can tune IntegerMinInnProd to also return a witness (i, j)

with 〈ai,b j〉 ≤ r, if it exists. To do so, we replace each ai by the (d + 2)-dimensional

vector a′i = (ai ·n,(i−1)n,−1) and similarly, each b j by the (d +2)-dimensional vector

b′j = (b j ·n,−1, j−1). Clearly, we have 〈a′i,b′j〉= 〈ai,b j〉n2− (i−1)n− ( j−1). Thus

〈a′i,b′j〉 ≤ rn2 if and only if 〈ai,b j〉 ≤ r since i, j ∈ [n]. Using a binary search over r, we

can find mini, j〈a′i,b′j〉, from whose precise value we can determine also a witness, if



135

it exists. Thus the running time wit(n,d,W ) for finding such a witness is bounded by

O(lognW ) ·T IntegerMinInnProd(n,d +2,nW ).

To solve AllInnProd, i.e., to compute p j := mini∈[n]〈ai,b j〉 for all j ∈ [n], we

employ a parallel binary search. Consider in particular the following problem P:

Given arbitrary r1, . . . ,rn, determine for all j ∈ [n] whether there exists i ∈ [n] such

that 〈ai,b j〉 ≤ r j. We will show below that this problem can be solved in time O(n ·

wit(
√

n,d + 1,dW 2)). The claim then follows, since starting from feasible intervals

R1 = · · · = Rn = [−dW 2,dW 2] satisfying p j ∈ R j, we can halve the sizes of each

interval simultaneously by a single call to P . Thus, after O(log(dW )) calls, the true

values p j can be determined, resulting in the time guarantee TAllInnProd(n,d,w) = O(n ·

wit(
√

n,d + 1,dW 2) · log(dW )) = O(n · T IntegerMinInnProd(
√

n,d + 3,ndW 2) log2(nW )),

as desired.

We complete the proof of the claim by showing how to solve P . Without loss

of generality, we can assume that r j ≤ dW 2 for every j, since no larger inner product

may exist. We group the vectors a1, . . . ,an in g := d
√

ne groups A1, . . . ,Ag of size at

most
√

n each, and do the same for the vectors b1, . . . ,bn to obtain B1, . . . ,Bg. Now, we

iterate over all pairs of groups Ak,B`, k, ` ∈ [g]: For each such choice of pairs, we do the

following process. For each vector ai ∈ Ak, we define the (d + 1)-dimensional vector

ãi := (ai,−1) and for every vector b j ∈ B`, we define b̃ j := (b j,r j). In the obtained

instance {ãi}a∈Ak ,{b̃ j}b∈B`
, we try to find some i, j such that 〈ãi, b̃ j〉 ≤ 0, which is

equivalent to 〈ai,b j〉 ≤ r j. If we succeed in finding such a witness, we delete b j and b̃ j

(but remember its witness) and repeat finding witnesses (an deleting the witnessed b j)

until we cannot find any. The process then ends and we turn to the next pair of groups.

It is easy to see that for all j ∈ [n], we have 〈ai,b j〉 ≤ r j for some i∈ [n] if and only

if the above process finds a witness for b j at some point. To argue about the running time,

we charge the running time of every call to witness finding to either (1) the pair Ak,B`, if



136

the call is the first call in the process for Ak,B`, or (2) to b j, if the call resulted from finding

a witness for b j in the previous call. Note that every pair Ak,B` is charged by exactly one

call and every b j is charged by at most one call (since in after a witness for b j is found, we

delete b j and no further witness for b j can be found). Thus in total, we obtain a running

time of at most (g2+n) ·wit(
√

n,d+1,dW 2)+O(n) = O(n ·wit(
√

n,d+1,dW 2)).

Theorem 5.4.1. We have LowRankLWS≡2 IntegerMinInnProd.

Proof. In Lemmas 5.4.1, 5.3.1, 5.4.2, and 5.4.3, we have proven

IntegerMinInnProd≤2 LowRankLWS = LWS(WLOWRANK)

≤2 Static-LWS(WLOWRANK)≤2 AllInnProd≤2 IntegerMinInnProd,

proving the claim.

5.5 Coin Change and Knapsack Problems

In this section, we focus on the following problem related to Knapsack: Assume

we are given coins of denominations d1, . . . ,dm with corresponding weights w1, . . . ,wm

and a target value n, determine a way to represent n using these coins (where each coin

can be used arbitrarily often) minimizing the total sum of weights of the coins used.

Since without loss of generality di ≤ n for all i, we can assume that m≤ n and think of

n as our problem size. In particular, we describe the input by weights w1, . . . ,wn where

wi denotes the weight of the coin of denomination i (if no coin with denomination i

exists, we set wi = ∞). It is straightforward to see that this problem is an LWS instance

LWS(WCoinChange), where the weight matrix WCoinChange is a Toeplitz matrix.

Problem 35 (CoinChange). We define the following LWS instantiation CoinChange =

LWS(WCoinChange).



137

Data items: weight sequence w = (w1, . . . ,wn) with wi ∈ [−W,W ]∪{∞}

Weights: wi, j = w j−i for 0≤ i < j ≤ n

Translated into a Knapsack-type formulation (i.e., denominations are weights,

weights are profits, and the objective becomes to maximize the profit), the problem differs

from UnboundedKnapsack only in that it searches for the most profitable multiset of

items of weight exactly n, instead of at most n.

Problem 36 (UnboundedKnapsack). We are given a sequence of profits p = (p1, . . . , pn)

with pi ∈ [0,W ], that is the item of size i has profit pi. Find the total profit of the multiset

of indices I such that ∑i∈I i≤ n and the total profit ∑i∈I pi is maximized.

The purpose of this section is to show that both the CoinChange problem and the

UnboundedKnapsack problem are subquadratically equivalent to (min,+)-Convolution.

Along the way, we also prove quadratic-time (min,+)-Convolution-hardness of the

Knapsack problem. Recall the definition of (min,+)-Convolution.

Problem 37 ((min,+)-Convolution). Given n-dimensional vectors a = (a0, . . . ,an−1),

b = (b0, . . . ,bn−1) ∈ [−W,W ]n for some W = poly(n), the (min,+)-Convolution a∗b is

defined by

(a∗b)k = min
0≤i, j<n:i+ j=k

ai +b j for all 0≤ k ≤ 2n−2.

As opposed to the classical Convolution, which we denote as a~b, solvable in

time O(n logn) using FFT, no strongly subquadratic algorithm for (min,+)-Convolution

is known. Compared to the popular orthogonal vectors problem, we have less support

for believing that no O(n2−ε)-time algorithm for (min,+)-Convolution exists. In par-

ticular, interesting special cases can be solved in subquadratic time [39] and there are

subquadratic-time co-nondeterministic and nondeterministic algorithms [30, 36]. At



138

the same time, breaking this long-standing quadratic-time barrier is a prerequisite for

progress on refuting the 3-sum and APSP conjectures. This makes it an interesting target

particularly for proving subquadratic equivalences, since both positive and negative

resolutions of this open question appear to be reasonable possibilities.

To obtain our result, we address two issues: (1) We show an equivalence between

the problem of determining only the value F [n], i.e., the best way to give change only

for the target value n, and to determine all values F [1], . . . ,F [n], which we call the

output-intensive version. (2) We show that the output-intensive version is subquadratic

equivalent to (min,+)-Convolution.

Problem 38 (oiCoinChange). The output-intensive version of CoinChange is to determine,

given an input to CoinChange, all values F [1], . . . ,F [n].

We first consider the second issue and provide a (min,+)-Convolution-based

lower bound for oiCoinChange.

Lemma 5.5.1 ((min,+)-Convolution≤2 oiCoinChange). We have

T (min,+)-Convolution(n,W )≤ T oiCoinChange(6n,4(2W +1))+O(n)

Proof. We first do a translation of the input. Note that for any scalars α,β , we have

(a+α)∗ (b+β ) = (a ∗ b)+α +β . Let M := 2W +1. Without loss of generality, we

may assume that

2M ≤ ai ≤ 3M for all i = 0, . . . ,n−1,

0≤ b j ≤M for all j = 0, . . . ,n−1.

We now define a CoinChange instance with a problem size n′ = 6n and W ′ = 4M by



139

defining

w = (4M)n ◦ (an−1, . . . ,a0)◦ (4M)n ◦ (bn−1, . . . ,b0)◦ (4M)2n.

We now claim that F [4n+ i] = (a∗b)2n−i for i = 1, . . . ,2n, which immediately

yields the lemma. To do so, we will prove the following sequence of identities.

F [i] = 4M for i ∈ [n], (5.4)

F [n+ i] = an−i for i ∈ [n], (5.5)

F [2n+ i] = 4M for i ∈ [n], (5.6)

F [3n+ i] = bn−i for i ∈ [n], (5.7)

F [4n+ i] = (a∗b)2n−i for i ∈ [2n], (5.8)

In the last line, we define, for our convenience, (a∗b)2n−1 = 4M (note that before, we

defined only the entries (a∗b)k with k ≤ 2n−2).

For later convenience, observe that 0≤ wi ≤ 4M for all i ∈ [n′]. It is easy to see

that this implies 0≤ F [i]≤ 4M for i ∈ [n′].

The identities in (5.4) are obvious.

To prove the identities in (5.5) inductively over i, recall that

F [n+ i] = min
j=1,...,n+i

{F [n+ i− j]+w j}

We observe that F [n+ i− j] +w j < 4M can only occur if j ≥ n+ 1 (since otherwise

w j = 4M), which implies n+ i− j≤ n and F [n+ i− j] = 4M except for the case j = n+ i.

In this case, we have F [n+ i− j]+w j = F [0]+wn+i = an−i ≤ 4M.

To prove the identities in (5.6), observe that for 1 ≤ j ≤ 3n, we have w j ≥ 2M

by assumption mini ai ≥ 2M. Similarly, we have already argued that F [i′] ≥ 2M for



140

1≤ i′ ≤ 2n. Thus, we can inductively show that

F [2n+ i] = min{F [0]+w2n+i, min
j=1,...,2n+i−1

F [2n+ i− j]+w j}= 4M

using w2n+i = 4M and that every sum in the inner minimum expression is at least 4M.

To prove the identities in (5.7), note that for F [3n+ i− j]+w j < 4M to hold, we

must have either n+1≤ j ≤ 2n or 3n+1≤ j ≤ 3n+ i, since otherwise w j = 4M. We

observe that for n+1≤ j≤ 2n, we have w j ≥mini ai≥ 2M and F [3n+ i− j]≥mini ai≥

2M. Thus, we may assume that 3n+ 1 ≤ j ≤ 3n+ i. Note that in this case, we have

F [3n+ i− j] = 4M except for the case j = 3n+ i, where we have F [3n+ i− j]+w j =

F [0]+w3n+i = bn−i < 4M.

Finally, for the identities in (5.8), we might have F [4n+ i]+w j < 4M only if

n+1≤ j ≤ 2n or 3n+1≤ j ≤ 4n. First consider the case that i = 1. We have

F [4n+1] = min{w4n+1, min
n+1≤ j≤2n

F [4n+1− j]︸ ︷︷ ︸
=4M

+w j, min
3n+1≤ j≤4n

F [4n+1− j]︸ ︷︷ ︸
=4M

+w j}

(5.9)

= 4M (5.10)

Inductively over 1 < i≤ 2n, we will prove F [4n+ i] = (a∗b)2n−i. By definition,

F [4n+ i] = min{w4n+i, min
n+1≤ j≤2n

F [4n+ i− j]+w j, min
3n+1≤ j≤4n

F [4n+ i− j]+w j}

= min{w4n+i, min
1≤ j′≤n

F [3n+ i− j′]+an− j′, min
1≤ j′≤n

F [n+ i− j′]+bn− j′}

(5.11)



141

Note that

min
1≤ j′≤n

F [n+ i− j′]︸ ︷︷ ︸
=4M for j′≥i or j′<i−n

+bn− j′ = min
max{1,i−n}≤ j′≤min{i−1,n}

an−(i− j′)+bn− j′ (5.12)

= (a∗b)2n−i (5.13)

where the last equation follows from noting that the choice of j′ lets n− j′ and n−(i− j′)

range over all admissible pairs of values in [0,n−1] summing up to 2n− i. Similarly, we

inductively prove that

min
1≤ j′≤n

F [3n+ i− j′]+an− j′ = min
max{1,i−n}≤ j′≤min{i−1,n}

an−(i− j′)+bn− j′ = (a∗b)2n−i

since an− j′ ≥ 2M and F [3n+ i− j′] ≥ 2M whenever j′ ≥ i or j′ < i− n (where the

last regime uses F [4n+ i′] = (a ∗ b)2n−i′ ≥ 2M inductively for i′ < i). Finally, since

(a ∗ b)2n−i ≤ (maxi ai)+ (max j b j) ≤ 4M, we can simplify (5.11) to F [4n+ i] = (a ∗

b)2n−i.

Using the notion of Static-LWS, the other direction is straight-forward.

Lemma 5.5.2. We have

oiCoinChange≤2 Static-LWS(WCoinChange)≤2 (min,+)-Convolution

Proof. In Lemma 5.3.1, we have in fact reduced the output-intensive version of LWS(W)

to our static problem Static-LWS(W), thus specialized to the coin change problem,

we only need to show that Static-LWS(WCoinChange) subquadratically reduces to the

(min,+)-Convolution problem. Consider an input instance to Static-LWS given by

I = {a+ 1, . . . ,a+N}, J = {a+N + 1, . . . ,a+ 2N} and values F [i], i ∈ I. Defining



142

M := 2W +1 and the vectors

u := (nM,F [a+1], . . . ,F [a+N],

N times︷ ︸︸ ︷
nM, . . . ,nM),

v := (nM,w1, . . . ,w2N),

we have (u∗ v)N+k = mini=1,...,N F [a+ i]+wN+k−i = F ′[a+N + k] for all k = 1, . . . ,N,

thus computing the (min,+)-Convolution of two (2n+1)-dimensional vectors solves the

Static-LWS(WCoinChange) problem, yielding the claim.

The last two lemmas resolve issue (2). We proceed to issue (1) and show that

the output-intensive version is subquadratically equivalent to both CoinChange and

UnboundedKnapsack that only ask to determine a single output number. We introduce

the following notation for our convenience: Recall that weight wi denotes the weight of

a coin of denomination i. For a multiset S ⊆ [n], we let d(S) := ∑i∈S i denote its total

denomination, i.e., sum of the denomination of the coins in S (where multiples uses of the

same coin is allowed, since S is a multiset). We let w(S) := ∑i∈S wi denote the weight of

the multiset. Analogously, when considering a Knapsack instance, p(S) = ∑i pi denotes

the total profit of the item (multi)set S.

It is trivial to see that UnboundedKnapsack≤2 oiCoinChange. Furthermore, we

can give the following simple reduction from CoinChange to UnboundedKnapsack.

Observation 5.5.1 (CoinChange≤2 UnboundedKnapsack≤2 oiCoinChange). We have

TCoinChange(n,W )≤ TUnboundedKnapsack(n,nW )+O(n)

and

TUnboundedKnapsack(n,W )≤ T oiCoinChange(n,W )+O(n)



143

Proof. Given a CoinChange instance, for every weight wi < ∞, we create an item of size i

and profit pi := i ·M−wi in our resulting UnboundedKnapsack instance for a sufficiently

large constant M≥ nW . This way, all profits are positive and every multiset S whose sizes

sum up to B has a profit of p(S) = B ·M−w(S). Since M ≥ nW ≥ maxS,d(S)≤n |w(S)|,

this ensures that the maximum-profit multiset of total size/denomination at most n

has a total size/denomination of exactly n. Thus, the optimal multiset S∗ has profit

p(s∗) = n ·M−minS:d(S)=n w(S) = n ·M− F [n], from which we can derive F [n], as

desired.

Given an UnboundedKnapsack instance, we define for every item of size i and

profit pi the corresponding weight wi =−pi in a corresponding CoinChange instance. It

remains to compute all F [1], . . . ,F [n] in this instance and determining their minimum,

concluding the reduction.

The remaining part is similar in spirit to Lemma 5.4.3: Somewhat surpris-

ingly, the same general approach works despite the much more sequential nature of

the Knapsack/CoinChange problem – this sequentiality can be taken care of by a more

careful treatment of appropriate subproblems that involves solving them in a particular

order and feeding them with information gained during the process.

Lemma 5.5.3 (oiCoinChange≤2 CoinChange). We have that

T oiCoinChange(n,W )≤ O(log(nW ) ·n ·TCoinChange(24
√

n,3n2W ))

Proof. Let I be an oiCoinChange instance. To define our subproblems, we set N :=

d
√

ne and define N ranges W1 := [1,N], . . . , WN := [(N−1)N +1,N2]. To determine

all F [i] = minS:d(S)=i w(S), we will compute F [i] for all i ∈W j successively over all

j = 1, . . . ,N. The case of j = 1 and j = 2 can be computed by the naive algorithm

in time O(N2) = O(n). Consider now any fixed j ≥ 3 and assume that all values F [i]



144

for i ∈W j′ with j′ < j have already been computed. We employ a parallel binary

search. For every i ∈W j, we set up a feasible range Ri initialized to [−nW,nW ]. We

will maintain the invariant that F [i] ∈Ri and will halve the size of all feasible ranges

Ri, i ∈W j simultaneously using a small number of calls to the following problem

P(M,W̄ ): Given an instance J for CoinChange specified by the weights w̃1, . . . , w̃M,

as well as values r̃1, . . . , r̃M ∈ [−W̄ ,W̄ ]∪{−∞,∞}, determine whether there exists an

i ∈ [M] with T J [i] ≤ r̃i, and if so, also return a witness i. We will later prove that

this problem can be solved in time T P(M,W̄ ) = O(TCoinChange(2M,3M2W̄ )). Clearly,

after O(log(nW )) rounds of this parallel binary search, the feasible ranges consists of

single values, thus determining the values of all F [i] for i ∈W j. Since we will show that

halving all feasible ranges for range W j takes O(N) calls to P(12N,nW ), and we need

to determine at most N ranges W3, . . . ,WN , the total time for this process amounts to

O(log(nW )N2 ·T P(12N,nW )) = O(log(nW )N2 ·TCoinChange(24N,3n2W )).

We now describe how to use P to halve the size of all feasible ranges Ri, i ∈W j:

we set ri to the median of Ri and aim to determine, for all i ∈W j, whether F [i] ≤ ri,

i.e., whether some multiset S with d(S) = i and w(S) ≤ ri exists. We achieve this by

the following process: For every k = 1, . . . , j, we consider only two ranges, namely

Wk = [(k−1)N +1,kN] and W j−k∪W j−k+1 = [( j− k−1)N +1,( j− k+1)N]. Let us

first consider the case k ≥ 2. Here, we can define the 2N-dimensional vectors a,b with

a` =


w(k−1)N+` for ` ∈ [N],

∞ for ` > N,

b` = F [( j− k−1)N + `] for ` ∈ [2N].

(Note that all F [i], i ∈W j−k ∪W j−k+1 for k ≥ 2 have already been computed by as-

sumption.) We are interested in all those values of a ∗ b of these vectors that cor-



145

respond to summing up some w(k−1)N+` with some F [( j− k− 1)N + `′] such that

( j−2)N + `+ `′ ∈W j. More specifically, we aim to determine whether there is some `

with (a∗b)N+` ≤ r( j−1)N+`. To do so, we use the reduction from (min,+)-Convolution

to oiCoinChange given in Lemma 5.5.1 to create an oiCoinChange instance J . From

this instance of problem size 12N we can read off the values of a∗b as a certain interval

in the corresponding T J -table. Thus, we can test whether (a ∗ b)N+` ≤ r( j−1)N+` for

some ` using P(12N,nW ): for every `, we let i be the unique index in the T J -table

representing the entry (a∗b)N+` and set r̃i := r( j−1)N+`. For all other i′, we set r̃i′ =−∞,

thus enforcing that those indices will never be reported.

For the special case k = 1, we proceed slightly differently: Here, we define the

2N-dimensional vectors a,b with

a` = F [`] for ` ∈ [2N]

b` =


F [( j−2)N + `] for ` ∈ [N]

∞ for ` > N.

(Note that all necessary F [i], i ∈W1 ∪W2 and F [i], i ∈W j−1 have already been com-

puted by assumption.) Analogously to above, we use P(12N,nW ) to test whether

(a∗b)N+` ≤ r( j−1)N+` using the reduction from (min,+)-Convolution to oiCoinChange

given in Lemma 5.5.1.

Once an i ∈W j has been reported to satisfy F [i]≤ ri for some witnessing sub-

problem given by the ranges Wk and W j−k∪W j−k+1 for some k, we set ri :=−∞ and

repeat on the same subproblem k (analogously to the approach of Lemma 5.4.3). Note

that for every j, we have j ≤ N subproblems and at most N many indices i ∈W j that can

be reported. Thus, we use at most O(N) many calls to the subproblem P.

To briefly argue correctness, note that by construction, we only determine some



146

i with F [i]≤ ri if we have found a witness. For the converse, let k be the largest index

such that the optimal multiset for i includes a coin in Wk. Then the subproblem given

by the ranges Wk and W j−k ∪W j−k+1 will give a witness. This is obvious for k ≥ 2.

For k = 1, note that no weight in Wk′ with k′ > 1 is used in an optimal multiset for

F [i] ∈W j. In particular, the optimal multiset S can be represented as S = S′∪S′′, where

S′ is a multiset of total denomination i′ ∈W j−1 and S′′ is a multiset of total denomination

i− i′ ∈W1∪W2. Thus, in the instance constructed from a,b, we will find the witness

F [i]≤ F [i′]+F [i− i′]≤ ri.

We finally describe how to solve P(M,W̄ ) in time TCoinChange(2M,3M2W̄ ). First

consider the problem without finding a witnessing i. Let w̃1, . . . , w̃M, r̃1, . . . , r̃M be an

instance J of P(M,W̄ ). We define a CoinChange instance K of problem size 2M by

giving the weights

w′i := w̃i for all i ∈ [M],

w′2M−i :=−3MW̄ − r̃i for all i ∈ [M].

We claim that T K [2M] ≤ −3MW̄ iff the input instance to P is a yes instance: First

observe that T K [1] = T J [1], . . . ,T K [M] = T J [M] since the first M weights agree

for both J and K . Consider the case that there is some i ∈ [M] with T J [i] ≤ r̃i.

Then we have T K [2M]≤ T K [i]+w2M−i = (T J [i]− r̃i)−3MW̄ ≤−3MW̄ , as desired.

Conversely, assume that all T J [i] > r̃i. We distinguish the cases whether the optimal

subsequence S uses only weights among w̃1, . . . , w̃M or not. In the first case, since |w̃i| ≤

W for i ∈ [M], we have that w(S) ≥ 2M ·mini∈[n] |w̃i| ≥ −2MW̄ > −3MW̄ . Otherwise,

S uses exactly one weight among w̃M+1, . . . , w̃2M. Let this weight be w̃2M−i. Then

w(S) = T K [i]+ w̃2M−i = (T J [i]− r̃i)−3MW̄ >−3MW̄ since T J [i]> r̃i, yielding the

claim.



147

Very similar to Lemma 5.4.3, we can now tune the above reduction to also produce

a witness i such that T J [i]≤ r̃i. For this, we scale all weights w′i, i ∈ [2M] by a factor of

M and subtract a value of i−1 for every w′i, i∈ [M]. It is easy to see that a yes instance K

attains some value T K [2M] =−κ ·M− i for some integers κ ≥ 3 and 0≤ i < n, where

i+1 is a witness for T J [i+1]≤ r̃i+1, thus computing T K [2M] lets us derive a witness

as well. Thus, problem P can be solved by a single call to TCoinChange(2M,3M2W̄ ).

The results above prove the following theorem.

Theorem 5.5.1. We have

(min,+)-Convolution≡2 CoinChange≡2 UnboundedKnapsack

Furthermore, the bounded version of Knapsack admits no strongly subquadratic-time

algorithm unless (min,+)-Convolution can be solved in strongly subquadratic time.

Proof. Lemma 5.5.1 and Lemma 5.5.2 prove (min,+)-Convolution ≡2 oiCoinChange,

while Observation 5.5.1 and Lemma 5.5.3 establish oiCoinChange ≡2 CoinChange ≡2

UnboundedKnapsack, yielding the first claim.

The second claim follows directly from inspecting the proofs of Lemma 5.5.1,

Lemma 5.5.3 and the first claim of Observation 5.5.1 and observing that we only reduce

to CoinChange/Knapsack instances in which the optimal multiset (for each total size) is

always a set, i.e., uses each element at most once.

5.6 Chain LWS

In this section we consider a special case of of Least-Weight Subsequence prob-

lems called the Chain Least-Weight Subsequence (ChainLWS) problem. This captures



148

problems in which edge weights are given implicitly by a relation R that determines

which pairs of data items we are allowed to chain. The aim is to find the longest chain.

An example of a Chain Least-Weight Subsequence problem is the NestedBoxes

problem. Given n boxes in d dimensions, given as non-negative, d-dimensional vectors

b1, . . . ,bn, find the longest chain such that each box fits into the next (without rotation).

We say box that box a fits into box b if for all dimensions 1≤ i≤ d, ai ≤ bi.

NestedBoxes is not immediately a least-weight subsequence problem, as for least

weight subsequence problems we are given a sequence of data items, and require any

sequence to start at the first item and end at the last. We can easily convert NestedBoxes

into a LWS problem by sorting the vectors by the sum of the entries and introducing two

special boxes, one very small box ⊥ such that ⊥ fits into any box bi and one very large

box > such that any bi fits into >.

We define the chain least-weight subsequence problem with respect to any relation

R and consider a weighted version where data items are given weights. To make the

definition consistent with the definition of LWS the output is the weight of the sequence

that minimizes the sum of the weights.

Problem 39 (ChainLWS). Fix a set of objects D and a relation R⊆D×D. We define the

following LWS instantiation ChainLWS(R) = LWS(WChainLWS(R)).

Data items: sequence of objects d0, . . . ,dn ∈ D with weights w1, . . . ,wn ∈ [−W,W ].

Weights: wi, j =


w j if (xi,x j) ∈ R,

∞ otherwise,
for 0≤ i < j ≤ n.

The input to the (weighted) chain least-weight subsequence problem is a sequence

of data items, and not a set. Finding the longest chain in a set of data items is NP-complete

in general. For example, consider the box overlap problem: The input is a set of boxes in

two dimensions, given by the top left corner and the bottom right corner, and the relation



149

consists of all pairs such that the two boxes overlap. This problem is a generalization of

the Hamiltonian path problem on induced subgraphs of the two-dimensional grid, which

is an NP-complete problem [88].

We relate ChainLWS(R) to the class of Selection problems with respect to the

same relation R.

Problem 40 (Selection). Let D be a set of objects, and let D1,D2 ⊆ Dn. Given two

sequences of inputs (a1, . . . ,an) ∈ D1 and (b1, . . . ,bn) ∈ D2 and a relation R ⊆ D×D,

determine if there is i, j satisfying R(ai,b j). We denote this selection problem with respect

to a relation R and sets D1,D2 by Selection(RD1,D2). If D1 = D2 = Dn, we denote the

problem by Selection(R).

The class of Selection problems includes several well studied problems including

MinInnProd, OrthogonalVectors [142, 7] and VectorDomination [80].

We will use the Selection problems in the search variant, where we find a pair

satisfying the R if such a pair exists. To reduce the the search variant to the deci-

sion variants in a fine-grained way, we can use a simple, binary search type reduc-

tion from the decision problem to the search problem: If there is a pair (ai,b j) sat-

isfying R, subdivide the input into subsets A1 = {a1, . . . ,an/2}, A2 = {an/2+1, . . . ,an},

B1 = {b1, . . . ,bn/2}, B2 = {bn/2+1, . . . ,bn}, and decide if which of the four instances

(A1,B1),(A1,B2),(A2,B1),(A2,B2) contains a solution. We then recurse on the subprob-

lem where there is a solution. If the decision version has time complexity O(nc) for some

constant c, then this algorithm for finding a pair has time complexity Õ(nc).

We give a subquadratic reduction from ChainLWS(R) to Selection(R) that is

independent of R.

Theorem 5.6.1. For all relations R such that R can be computed in time subpolynomial

in the number of data items n, ChainLWS(R)≤2 Selection(R).



150

The proof is again based on Static-LWS and a variation on a trick of [150].

As an intermediate step, we define the Static-ChainLWS problem as the equivalent

of the Static-LWS problem in the special case for chains.

Problem 41 (Static-ChainLWS). Fix an instance of ChainLWS(R). Given intervals

I := {a+ 1, . . . ,a+N} and J := {a+N + 1, . . . ,a+ 2N} for some a and N, together

with the correctly computed values F [a+1], . . . ,F [a+N], the Static Chain Least-Weight

Subsequence Problem (Static-ChainLWS) asks to determine

F ′[ j] := min
i∈I:R(i, j)

F [i]+w j for all j ∈ J.

Similar to the definition of ChainLWS, Static-ChainLWS is the special case of

Static-LWS where the the weights wi, j are restricted to be either w j or ∞, depending on

R. As a result, Lemma 5.3.1 applies directly.

Corollary 5.6.1 (ChainLWS(R)≤2 Static-LWS(R)). For any R, if Static-ChainLWS(R)

can be solved in time O(n2−ε) for some ε > 0, then ChainLWS(R) can be solved in time

Õ(n2−ε).

We now reduce Static-ChainLWS(R) to Selection(R) with a variation on the trick

by [150].

Lemma 5.6.1 (Static-ChainLWS(R) ≤2 Selection(R)). For all relations R such that R

can be computed in time subpolynomial in the number of data items n,

Static-ChainLWS(R)≤2 Selection(R)

Proof. As a first step, we sort the data items ai, i ∈ I = {a+ 1, . . . ,a+N} by F [i] in

increasing order and we will assume for the remainder of the proof that for all a+1≤ i <



151

a+N we have F [i]≤F [i+1]. We then split the set aa+1, . . . ,aa+N into g := d
√

Ne groups

A1, . . . ,Ag with Ai = {a(i−1)dN/ge, . . . ,aidN/ge−1}. We split the set ba+N+1, . . . ,ba+2N into

B1, . . . ,Bg in a similar fashion. We then iterate over all pairs Ak,Bl with k, l ∈ [g] in

lexicographic order, and for each pair we do the following. Call the oracle for Selection(R)

on the input Ak,Bl to find a pair ai,b j such that the relation R is satisfied on the pair.

If there is no such pair, move to the next pair Ak∗,Bl∗ of sets of data items. If there

is such a pair, find the first element ai∗ ∈ Ak such that R(ai∗,b j) using a simple linear

scan. As we first sorted A and iterate over sets Ak,Bl in lexicographic order, we have

F ′[ j] = F [i∗]+w j. We then remove b j from Bl and repeat.

For the runtime analysis, we observe, that the oracle can find a pair of elements

at most O(N) times, as each time we find a pair we remove an element from the input.

In the case where we do find a pair of elements we do a linear scan that takes O(N/g)

time. Furthermore, each pair of sets Ak,Bl can fail to find a pair at most once. Hence, if

TSelection is the time to solve the Selection problem and using g =
√

N we get a time of

T (N) = NTSelection(
√

N)+N(TSelection(
√

N)+
√

N) = NTSelection(
√

N) (5.14)

which is subquadratic if TSelection(N) is subquadratic.

For the other direction, we do not have a reduction that is independent of the

relation R. Instead, we give sufficient conditions for the existence of such subquadratic

reductions.

Theorem 5.6.2. Let D be a set of objects and D1,D2 ⊆Dn be a set of possible sequences.

For any relation R⊆ D×D such that

• There is a data item ⊥ such that (⊥,d) ∈ R for all d ∈ D.

• There is a data item > such that (d,>) ∈ R for all d ∈ D.



152

• For all a∈ {1,2} and any set of data items (d1, . . . ,dn)∈Da there is a permutation

of indices i1, . . . , in such that for any j < k, (di j ,dik) 6∈ R. This ordering can be

computed in time O(n2−δ ) for δ > 0. We call this ordering the natural ordering.

Then Selection(RD1,D2)≤2 ChainLWS(R).

We call a relation satisfying the conditions above a topological relation.

Proof. We construct an unweighted ChainLWS problem with all weights set to −1, so

that the problem is to find the longest chain. Let (a1, . . .an) ∈ D1 and (b1, . . . ,bn) ∈ D2

be the data items of Selection(RD1,D2) and sort both sets according to the natural ordering.

We claim that for the sequence of data items ⊥,a1, . . .an,b1, . . . ,bn,> the weight of the

least weight subsequence is −3 exactly if there is a pair (ai,b j) ∈ R. Because of the

property of the natural orderings, any valid subsequence starting at ⊥ and ending at >

contains at most one element ai and at most one element b j. If there is a pair (ai,b j) ∈ R,

then the sequence ⊥,ai,b j,> will have value −3. If there is no such pair, any valid

sequence contains at most one element other than ⊥ and > and its value is therefore at

least −2.

We call a relation satisfying the conditions above a topological relation.

Proof. We construct an unweighted ChainLWS problem with all weights set to −1, so

that the problem is to find the longest chain. Let (a1, . . .an) ∈ D1 and (b1, . . . ,bn) ∈ D2

be the data items of Selection(RD1,D2) and sort both sets according to the natural ordering.

We claim that for the sequence of data items ⊥,a1, . . .an,b1, . . . ,bn,> the weight of the

least weight subsequence is −3 exactly if there is a pair (ai,b j) ∈ R. Because of the

property of the natural orderings, any valid subsequence starting at ⊥ and ending at >

contains at most one element ai and at most one element b j. If there is a pair (ai,b j) ∈ R,

then the sequence ⊥,ai,b j,> will have value −3. If there is no such pair, any valid



153

sequence contains at most one element other than ⊥ and > and its value is therefore at

least −2.

In the remainder of this section we give some interesting instantiations of the

subquadratic equivalence of Selection and ChainLWS.

Corollary 5.6.2 (NestedBoxes≡2 VectorDomination). The weighted NestedBoxes prob-

lem on d = c logn dimensions can be solved in time n2−(1/O(c log2 c)). For d = ω(logn),

the (unweighted) NestedBoxes problem cannot be solved in time O(n2−ε) for any ε > 0

assuming SETH.

Proof. Let R be the relation that contains all pairs of non-negative, d-dimensional vectors

a,b such that ai ≤ bi for all i. Now Selection(R) is VectorDomination, and ChainLWS(R)

is the NestedBoxes problem.

Using the reduction from Theorem 5.6.1 and the algorithms for vector domination

of the stated runtime [80, 38] we immediately get an algorithm for NestedBoxes.

We apply Theorem 5.6.2 with >=W d where W is the largest coordinate in all

input vectors, ⊥ = 0d and use the sum of the coordinates of the boxes as the natural

ordering. SETH-hardness of NestedBoxes then follows from the SETH-hardness of the

VectorDomination problem [142].

If we restrict NestedBoxes and VectorDomination to Boolean vectors, then we

get SubsetChain and SetContainment respectively. In this case the upper bound im-

proves to n2−1/O(logc) [7]. Note that SetContainment≡2 OrthogonalVectors, hence

SubsetChain≡2 OrthogonalVectors.

To give an example of an indirect use of Theorem 5.6.2, consider the space of

all d-dimensional axis-aligned boxes in space (given by two corners as a pair of vectors

(v,v)) and the relation R containing all boxes that overlap. While R is not a topological

relation, we do the following reduction to the overlap problem on d + 2 dimensions:



154

Let (a1,a1), . . . ,(an,an),(b1,b1), . . . ,(bn,bn) be the input to Selection(R). Define (a′i,a
′
i)

as (ai ◦ i+ 0.1 ◦ 0,ai ◦ i+ 0.9,n) and (b′i,b
′
i) as (bi ◦ 0 ◦ i+ 0.1,bi ◦ n ◦ i+ 0.9) for all i.

Note that (a′i,a
′
i) and (a′j,a

′
j) do not overlap for all i 6= j, (b′i,b

′
i) and (b′j,b

′
j) do not

overlap for all i 6= j, but (a′i,a
′
i) and (b′j,b

′
j) overlap exactly if (ai,ai) and (b j,b j) overlap.

We therefore reduced Selection(R) to Selection(RD1,D2) for some D1,D2 such that the

relation is topological and can then apply Theorem 5.6.2.

We would also like to point out that the definition of ChainLWS requires the input

to be a sequence of data items, and not a set. Consider the following definition:

Problem 42 (ChainSet). Let {x0, . . . ,xn} be a set of data items, weights w1, . . . ,wn−1 ∈

[−W,W ] and a relation R(xi,x j) be given. The chain set problem for R, denoted

ChainSet(R) asks to find the sequence i0, i1, i2, . . . , ik such that for all j with 1 ≤ j ≤ k

the pair (xi j−1,xi j) is in the relation R and the weight ∑
k−1
j=1 wi j is minimized.

The only difference between ChainLWS and ChainSet is that the input is given as

a set of data items, as opposed to a sequence.

While ChainLWS can always be solved in quadratic time, the ChainSet problem

is NP-complete. For example, if R is the box overlap relation (for d = 2) above, then

this problem is a generalization of the Hamiltonian path problem on induced subgraphs

of the two-dimensional grid, which is an NP-complete problem [88]. This is a formal

barrier to a more general (black-box) reduction than Theorem 5.6.2, as any reduction

from Selection to ChainLWS must impose an ordering on the data items.

5.7 Near-linear time algorithms

In this section, we classify problems to be solvable in near-linear time using the

lens of our framework. Note that in these instances, near-linear time solutions have

already been known, however, our focus on the static variants of LWS provides a simple,



155

general approach to find fast algorithms by identifying a simple core problem. Since in

this paper, we generally ignore subpolynomial factors in the running time, we concentrate

here on the reduction from some LWS variant to its corresponding core problem and

disregard reductions in the other direction.

5.7.1 Longest Increasing Subsequence

The longest increasing subsequence problem LIS has been first investigated by

Fredman [60], who gave an O(n logn)-time algorithm and gave a corresponding lower

bound based on Sorting. The following LWS instantiation is equivalent to LIS.

Problem 43 (LIS). We define the following LWS instantiation LWS(WLIS).

Data items: integers x1, . . . ,xn ∈ {1, . . . ,W}

Weights: wi, j =


−1 if xi < x j

∞ ow.

It is straightforward to verify that −F [n] yields the value of the longest increasing

subsequence of x1, . . . ,xn. Using the static variant of LWS introduced in Section 5.4, we

observe that LIS effectively boils down to Sorting.

Observation 5.7.1. LIS can be solved in time Õ(n).

Proof. By Lemma 5.3.1, we can reduce LIS to the static variant Static-LWS(WLIS).

It is straight-forward to see that the latter can be reformulated as follows: Given

(a1,F [1]), . . . ,(aN ,F [N]) and b1, . . . ,bN , determine for every j = 1, . . . ,N, the value

F ′[ j] = −1 + min1≤i≤N,ai<b j F [i]. For this purpose, it suffices to sort the first list

(ai1,F [i1]), . . . ,(aiN ,F [iN ]) such that ai1 ≤ ·· · ≤ aiN and the second as b j1, . . . ,b jN with

b j1 ≤ ·· · ≤ b jN . Finally, a single pass over both lists will do: For each k = 1, . . . ,N,

we search for the largest ` such that ai` < b jk , then the T ′-value corresponding to b j`

is −1+min1≤`′≤`F [i`′ ]. By this approach, it is easy to see that after sorting, these



156

values can be computed in time O(N). For the exact running time, note that solving

Static-LWS(WLIS) takes time O(N logN) due to sorting, yielding a O(n log2 n)-time

algorithm for LIS by Lemma 5.3.1.

5.7.2 Unbounded Subset Sum

UnboundedSubsetSum is a variant of the classical SparseSubsetSum, in which

repetitions of elements are allowed. While improved pseudo-polynomial-time algo-

rithms for SparseSubsetSum could only recently be found [99, 32], there is a simple

algorithm solving UnboundedSubsetSum in time O(n logn) [32]. It can be cast into an

LWS formulation as follows.

Problem 44 (UnboundedSubsetSum). The UnboundedSubsetSum problem is defined as

the LWS instantiation LWS(WUnboundedSubsetSum).

Data items: S⊆ [n]

Weights: wi, j =


0 if j− i ∈ S

∞ ow.

Note that in this formulation, F [n] = 0 if and only if there is a multiset of numbers

from S that sums up to n. It is a straightforward observation that the static variant of

UnboundedSubsetSum can be solved by classical convolution, i.e., (·,+)-convolution.

Observation 5.7.2. UnboundedSubsetSum can be solved in time Õ(n).

Proof. Noting that all weights wi, j are either 0 or ∞, it is easy to see that the static

variant Static-LWS(WUnboundedSubsetSum) can be reformulated as follows: Given a subset

X ⊆ I = {a+1, . . . ,a+N}, determine, for all j ∈ J = {a+N +1, . . . ,a+2N}, whether

there exists some i ∈ X such that j− i ∈ S. To do so, we do the following: We represent

X as an N-bit vector x = (x1, . . . ,xN)∈ {0,1}N with xi = 1 iff a+ i ∈ X . Furthermore, we

represent the relevant part of S by defining a 2N-bit vector s = (s1, . . . ,s2N) ∈ {0,1}2N



157

with si = 1 iff. i ∈ S. Then the (·,+)-convolution r = x~ s of x and s allows us to

determine F ′[a+N + j] for j = 1, . . . ,N: this values is 0 iff rN+ j > 0 and ∞ otherwise.

Correctness follows from the observation that rN+ j > 0 is equivalent to the existence of

some i ∈ [N] and k ∈ [2N] with i+ k = N + j and xi = sk = 1. This in turn is equivalent

to a+ i ∈ X and (a+N + j)− (a+ i) = N + j− i = k ∈ S, as desired.

Thus Static-LWS(WUnboundedSubsetSum) can be solved by a single convolution

computation, which can be performed in time O(N logN). Thus by Lemma 5.3.1, this

gives rise to a O(n log2 n)-time algorithm for UnboundedSubsetSum.

5.7.3 Concave LWS

The ConcaveLWS problem is a special case of LWS in which the weights satisfy

the quadrangle inequality. Since a complete description of the input instance consists of

Ω(n2) weights, we use the standard assumption that each wi, j can be queried in constant

time. This allows for sublinear solutions in the input description, in particular there exist

O(n)-time algorithms [140, 65].

Problem 45 (ConcaveLWS). We define the LWS instantiation LWS(WCONC).

Weights: wi, j given by oracle access, satisfying wi, j +wi′, j′ ≤ wi′, j +wi, j′ for i≤ i′ ≤ j ≤

j′.

We revisit ConcaveLWS and its known connection to the problem of computing

column (or row) minima in a totally monotone5 (n×n)-matrix, which we call the SMAWK

problem because of its remarkable O(n)-time solution called the SMAWK algorithm [12].

Observation 5.7.3. ConcaveLWS can be solved in time Õ(n).

Proof. The static variant of ConcaveLWS can be formulated as follows: Given in-

tervals I = {a + 1, . . . ,a + N} and J = {a + N + 1, . . . ,a + 2N}, we define a matrix
5A matrix M = (mi, j)i, j is totally monotone if for all i < i′ and j < j′, we have that mi, j > mi′, j implies

that mi, j′ > mi′, j′ . For a more comprehensive treatment, we refer to [12, 65].



158

M := (mi, j)i∈I, j∈J) with mi, j = F [i]+wi, j. It is easy to see that M is a totally monotone

matrix since w satisfies the quadrangle inequality. Note that the minimum of column

j ∈ J in M is mini∈I F [i]+wi, j = F ′[ j] by definition. Thus, using the SMAWK algorithm

we can determine all F ′[ j] in simultaneously in time O(N).

Thus by Lemma 5.3.1, we obtain an O(n logn)-time algorithm for ConcaveLWS.

5.8 Open Problems

We discuss the complexity of some succinct LWS instantiations both from an

upper bound and a lower bound perspective by proving equivalences with a number of

comparably well-studied core problems. The succinct instantiations we study include

natural problems such as LowRankLWS, CoinChange, ChainLWS including NestedBoxes

and SubsetChain, as well as previously studied instantiations such as ConcaveLWS and

LIS. A number of open questions remain. Our results do not generalize to arbitrary

instantiations of LWS. In particular, Static-LWS does not reduce subquadratically to

the problem of finding the minimum element in a succinctly described matrix. With

LowRankLWS and CoinChange we do provide instances we can identify equivalent core

problems, and it will be interesting to find further examples or even sufficient conditions

for which we can reduce LWS to other problems and vice versa.

For the case of ChainLWS, we are able to generalize the reduction from LWS to

Selection problems. However, the reduction, while preserving subquadratic algorithms,

does not preserve near-linear algorithms. For some cases, such as LIS, we are able to

reconstruct the near-linear time algorithm, which raises the question of what conditions

are necessary to do that. Similarly, we give sufficient conditions to reduce from Selection

to ChainLWS, and other sufficient or even necessary conditions should be explored for



159

both black-box, as well as white-box reductions.

Chapter 5 is based on material as it appears in the following publications: Marvin

Künnemann, Ramamohan Paturi, and Stefan Schneider. “On the Fine-grained Complexity

of One-Dimensional Dynamic Programming”. To appear in the International Colloquium

on Automata, Languages, and Programming, 2017. The author of this dissertation was a

principal author of this publication. We would like to thank Karl Bringmann and Russell

Impagliazzo for helpful discussions and comments on the material in Chapter 5.



Chapter 6

Fine-Grained Non-Reducibility

6.1 Introduction

In recent years, fine-grained complexity and conditional lower bounds in par-

ticular have been a fruitful area of study, with the number of problems where we can

explain their complexity growing steadily. Unfortunately, as our understanding of the

relationship between the exact complexities of problems grows, so does the complexity

of the web of known reductions and the number of distinct conjectures these results

are based on. Ideally, we would like to show that many of these conjectures are in fact

equivalent, or that all follow from some basic unifying hypothesis, thereby improving

our understanding and simplifying the state of knowledge. For example, it would be nice

to show that the 3-sum conjecture or the APSP conjecture follows from SETH. A result

like that would reduce the number of conjectures we rely on to explain the complexity of

problems.

At the same time, many problems seem to be hard, but their hardness is not

explained by any of the three most popular conjectures in fine-grained complexity, SETH,

the 3-sum conjecture and the APSP conjecture. Among these questions is if HittingSet

can be solved in subquadratic time or if MaxFlow has a linear time algorithm. For neither

of these problems can we answer the question positively with an algorithm nor negatively

160



161

with a conditional lower bound at this point.

In this chapter, we introduce a new technique which provides evidence that

unifying hardness results under one unifying hypothesis such as SETH is unlikely, at

least when restricted to deterministic reductions.

Our technique is a continuation of the idea to consider fine-grained versions

of traditional complexity assumptions. The Strong Exponential Time Hypothesis is a

fine-grained version of P 6= NP. In this chapter we consider a fine-grained version of

NP 6= coNP,which we call the Nondeterministic Strong Exponential Time Hypothesis

(NSETH).

Our goal is to get a fine-grained version of non-reducibility results based on

NP 6= coNP. If any problem in NP∩ coNP can be shown to be NP-complete, then

NP = coNP. Hence, assuming NP 6= coNP, placing a problem L in NP∩ coNP means

that L cannot be NP-complete (or coNP-complete) and there is no polynomial time

reduction from an NP-complete problem like 3-sat to L.

Similarly, by considering the nondeterministic and co-nondeterministic complexi-

ties of problems on a more fine-grained level, we deduce non-reducibility results based

on NSETH. We define NSETH formally as follows.

Definition 6.1.1 (Nondeterministic Strong Exponential Time Hypothesis (NSETH)). For

every ε > 0, there exists a k so that k-sat is not in coNTIME[2n(1−ε)].

Equivalently, the k-taut problem, the tautology problem on k-DNF formulas, is

not in NTIME[2n(1−ε)] for sufficiently large k.

We feel that NSETH is plausible for many of the same reasons as SETH. We can

think of NSETH as a statement about proof systems. Just as many algorithmic techniques

have been developed for k-sat, all of which approach exhaustive search for large k,

many proof systems have been considered for k-taut, and none have been shown to have



162

significantly less than 2n complexity for large k. In fact, the tree-like ([121]) and regular

resolution ([22]) proof systems have been proved to require such sizes. Moreover, we

observe that results of [89] (see Section 2.9) that obtain circuit lower bounds assuming

SETH is false yield the same bounds assuming that NSETH is false. So disproving

NSETH would be both a breakthrough in proof complexity and in circuit complexity.

We also consider the natural nondeterministic variant of ETH.

Definition 6.1.2 (Nondeterministic Exponential Time Hypothesis (NETH)). The 3-sat

problem on n variables requires is not in coNTIME[2εn] for some ε > 0.

We study the complexity of problems with respect to their natural complexity

T . In particular, we show that if both the nondeterministic and co-nondeterministic

problem is bounded by T 1−ε , then the problem cannot be SETH-hard under deterministic

reductions at time T , assuming NSETH.

We show non-reducibility results for the following problems and time bounds.

• HittingSet for sets of total size m and time T (m) = m1+γ is not SETH-hard for any

γ > 0, and no problem that is SETH-hard fine-grained reduces to HittingSet for

any such time complexity.

• 3-sum for T (n) = n1.5+γ is not SETH-hard for any γ > 0.

• MaxFlow, MinCostMaxFlow, and MaximumMatching on a graph with m edges

and T (m) = m1+γ are not SETH-hard.

• APSP on a graph with n vertices and T (n) = n
3+ω

2 +γ , where ω is the matrix

multiplication exponent, is not SETH-hard.

All the results above are assuming NSETH and under deterministic reductions.

While there are many known SETH-hard problems, few are graph problems, and

those few have the same logical structure. In addition to specific problems, our method



163

can be used to explain why the structure of SETH-hard graph problems are all similar. In

particular, we consider first-order definable graph properties on sparse graphs (where we

view the input size as the number of edges m). Under SETH there are such first-order

definable functions that require time Ω(mk−1−ε) for all ε > 0. At the same time, the

problem can be solved in time O(mk−1) for all properties. On the other hand, if NSETH,

all SETH-hard properties at time mk−1 have the same logical structure: k−1 quantifiers

of one type, followed by a single quantifier of the other type.

These results are only valid for deterministic or zero-error probabilistic fine-

grained reductions. We introduce a non-uniform variant NUNSETH under which they

also hold for randomized reductions with bounded error. However, some care should

be used to evaluate whether this hypothesis is true, since it has not been the subject

to previous study and Williams has shown related hypotheses about the Merlin-Arthur

complexity of k-taut are false ([148]).

6.2 Outline

In Section 6.3, we take another look at fine-grained reductions with an emphasis

on properties with regard to nondeterministic complexity and show how properties of fine-

grained reductions can be used for non-reducibility results under NSETH. In Section 6.4,

we consider the connection between satisfiability algorithms and circuit lower bounds

(see Section 2.9) with respect to NSETH and give reasons why disproving NSETH might

be difficult. In Section 6.5, we examine the nondeterministic and co-nondeterministic

complexities of several problems within polynomial time whose exact complexities have

been extensively studied, and show that, under NSETH, none of these problems are

SETH-hard. In Section 6.6, we explain why all the known maximally hard SETH-hard

first-order graph properties have the same logical structure.

Finally Section 6.7 discusses the implications of NSETH with respect to func-



164

tional and verification problems.

6.3 Definitions and basic properties

In this section we consider fine-grained reductions, as defined in Section 2.4, with

respect to nondeterminism. Remember the definition of a (deterministic) fine-grained

reduction.

Definition 2.4.1 (Fine-Grained Reductions (≤FGR)). Let L1 and L2 be languages, and let

T1 and T2 be time bounds. We say that (L1,T1) fine-grained reduces to (L2,T2) (denoted

(L1,T1) ≤FGR (L2,T2)) if for all ε > 0, there is a δ > 0 and a deterministic Turing

reduction M L2 from L1 to L2 satisfying the following conditions.

(a) The time complexity of the Turing reduction without counting the oracle calls is

bounded by T 1−δ

1 .

TIME[M ]≤ T 1−δ

1 (2.2)

(b) Let Q̃(M ,x) denote the set of queries made by M to the oracle on an input x of

length n. The query lengths obey the following time bound.

∑
q∈Q̃(M ,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

Given two problems L1 and L2, and (L1,T1)≤FGR (L2,T2) for some time bounds

T1 and T2, then L2 ∈ TIME[T2(n)1−ε ] for some ε > 0 implies L1 ∈ TIME[T1(n)1−δ ] for

some δ > 0. We first argue that the same fine-grained reduction also implies that the

existence of both a fast nondeterministic and co-nondeterministic algorithm for L2 implies

that there are also fast nondeterministic and co-nondeterministic algorithms for L1.



165

Lemma 6.3.1 (Fine-grained reductions transfer savings for (N∩ coN)TIME). Let L1,L2

be languages and T1,T2 be time bounds. Further let (L1,T1) ≤FGR (L2,T2), and L2 ∈

(N∩ coN)TIME[T2(n)1−ε ] for some ε > 0. Then there exists a δ > 0 such that

L1 ∈ (N∩ coN)TIME[T1(n)1−δ ]

Proof. Both the nondeterministic algorithm for L1 and ¬L1 follow the same outline. We

simulate the deterministic Turing reduction M L2 . For the oracle calls, we nondeter-

ministically guess for instances q ∈ Q̃(M ,x) if q ∈ L2 or not and simulate either the

nondeterministic machine for L2 or ¬L2. We can therefore simulate each oracle call

q in NTIME[T2(|q|)1−ε ] for some ε > 0. By the properties of the fine-grained reduc-

tion we have TIME[M ] ≤ T 1−δ

1 and ∑q∈Q̃(M ,x)(T2(|q|))1−ε ≤ (T1(n))1−δ , and hence

L1 ∈ NTIME[T1(n)1−δ ]. Similarly we have L1 ∈ coNTIME[T1(n)1−δ ] as we can negate

the output of the fine-grained reduction M L2 .

As an immediate consequence of Lemma 6.3.1 we get a way to show non-

reducibility assuming NSETH.

Corollary 6.3.1. Assuming NSETH, for any problem L and time bound T , if L ∈

(N∩ coN)TIME[T (n)1−δ ] for some δ > 0, then L is not SETH-hard under determin-

istic reductions at time T .

While Lemma 6.3.1 and Corollary 6.3.1 are formulated with respect to determin-

istic fine-grained reductions, we can extend the result to nondeterministic and zero-error

reductions. On the other hand, the results do not extend to randomized reductions.

We define nondeterministic fine-grained reductions as follows.

Definition 6.3.1 (Nondeterministic Fine-Grained Reductions). Let L1 and L2 be lan-

guages, and let T1 and T2 be time bounds. We say that (L1,T1) nondeterministically



166

fine-grained reduces to (L2,T2) if for all ε > 0, there is a δ > 0 and two nondeterministic

Turing reductions M L2
1 and M L2

2 satisfying the following conditions.

(a) For all x ∈ L1, then there is a y with |y| ≤ T 1−δ

1 such that M1(x,y) accepts.

(b) For all x 6∈ L1, then there is a y with |y| ≤ T 1−δ

1 such that M2(x,y) accepts.

(c) The time complexity of both Turing reduction without counting the oracle calls is

bounded by T 1−δ

1 , that is, for c ∈ {1,2}

TIME[Mc]≤ T 1−δ

1 (6.1)

(d) Let Q̃(M ,x) denote the set of queries made by M to the oracle on an input x of

length n. The query lengths obey the following time bound for c ∈ {1,2}.

∑
q∈Q̃(Mc,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

To prove Lemma 6.3.1 under nondeterministic reductions we can nondetermin-

istically guess y and simulate M1 and M2 similar to the deterministic case to get

nondeterministic Turing machines for L1 and 6= L1.

We use nondeterministic reductions in Section 6.5.6 to strengthen our result on

the APSP problem.

We will not define zero-error fine-grained reductions formally but note that

non-reducibility extends to zero-error reductions.

As we will show, many of the problems such as k-sum and HittingSet which

have served as starting points for fine-grained reductions have substantially smaller

nondeterministic complexities than their conjectured deterministic complexities. From

the above closure properties, it will follow that if NSETH is true, none of these problems



167

is SETH-hard under deterministic (or zero-error probabilistic) fine-grained reductions.

This leaves a major loophole: these problems might still be SETH-hard under randomized

reductions.

If we mimic the proof of Lemma 6.3.1 with randomized reductions, we get

a statement on Merlin-Arthur protocols. In a Merlin-Arthur protocol for L, for any

x ∈ L there is a proof y that is accepted with high probability, and for any x ∈ L, any

proof is rejected with high probability. We can show that (L1,T1) ≤rFGR (L2,T2) and

L2 ∈ (N∩ coN)TIME[T2(n)1−ε ] for some ε > 0 implies that for some δ > 0, there is

a Merlin-Arthur protocol for L1 with time T1(n)1−δ . However, a fast Merlin-Arthur

protocol for k-sat exists. In particular, Williams [148] shows that for any k, there is a

Merlin-Arthur protocol for k-sat with time Õ(2n/2). A Merlin-Arthur version of SETH

(MASETH) would therefore be false.

We outline a reason why even randomized SETH-hardness would still be some-

what surprising. We introduce a non-uniform version of NSETH, NUNSETH, and show

that this hypothesis would imply the non-existence of even randomized SETH-hardness

results.

Definition 6.3.2. Let k-taut be the tautology problem restricted to k-DNF’s. The Non-

uniform Nondeterministic Strong Exponential Time Hypothesis (NUNSETH) is the

statement: ∀ε > 0∃k ≥ 0, so that there are no nondeterministic circuit families of size

O(2n(1−ε)) recognizing the language k-taut.

While we do not have any general conservation of non-uniform nondeterministic

time by randomized reductions, we do have a limit for the special case of problems that

are SETH-hard under randomized reductions.

Lemma 6.3.2. Assume L is SETH-hard at time T (N) via a randomized reduction. If

NUNSETH, then there is no δ > 0 so that L ∈ (N∩ coN)TIME[T 1−δ (n)].



168

Proof. Let ε be the constant corresponding to δ in the reduction, and let M L be the

corresponding randomized oracle machine. Let m < nk be the length in bits of a de-

scription of a k-sat formula on n inputs. By repeating M L O(m) times and taking the

majority answer, we can make the error probability less than 2−m. Therefore, there is one

random tape that has no errors, using the standard argument that BPP ∈ P/poly. Since

M runs in total time 2(1−ε)n, this tape will have length at most m2(1−ε)n, and so will be

an exponential improvement over 2n. Once we have fixed the tape, we can simulate the

oracle queries nondeterministically as in the case of deterministic reductions, with total

complexity O(m) times what it is for one run. Thus, we get a nondeterministic circuit

with total size O(m2(1−ε)n).

Note that the above argument, in addition to needing advice, multiplies the

complexity by an amount polynomial in the input size. While this is not an issue for

k-sat, it would render the consequences of randomized reductions for problems within P

moot, since we are trying to preserve exact polynomial complexities.

While NUNSETH seems plausible, we should exercise some caution before

adopting it as an axiom. First, there are no known consequences if NUNSETH fails

to be true. Secondly, Williams’ result [148] disproving MASETH does remind us that

counter-intuitive things can happen when randomness and nondeterminism are combined,

so we should be cautious in assuming non-uniformity might not speed up computation in

this circumstance. Because there is a polynomial overhead in making such a protocol a

nondeterministic algorithm with advice, the efficient Merlin-Arthur protocol for k-sat

does however not contradict NUNSETH directly.



169

6.4 What if NSETH is false?

SETH is an interesting hypothesis because for both the case where SETH is true

and the case where it is false, we can prove consequences that seem difficult to prove

unconditionally. While the main focus of this dissertation is on consequences of SETH

being true, in this section we explore some consequences of it being false. In particular

we observe that we can reformulate earlier results by Williams [143] and Jahanjou, Miles

and Viola [89] on consequences of SETH being false as consequences that NSETH is

false. This is evidence that NSETH will be hard to refute.

A general framework to show that algorithms for C -sat imply circuit lower

bounds is due to Williams (see [143] and [147], and Section 2.9 for a brief summary).

We observe that the framework is more general than presented by Williams, as co-

nondeterministic algorithms for C -sat are sufficient to show the same lower bounds.

In Williams’ proof we show a contradiction to the nondeterministic time hier-

archy theorem by starting with an arbitrary language in NTIME[2n] and show that it

is NTIME[2n/ω] for some superpolynomial ω . The proof constructs a circuit using

nondeterminism and then verifies that the circuit is unsatisfiable using using the supposed

efficient satisfiability algorithm. However, since we have nondeterminism at our disposal,

a co-nondeterministic algorithm for satisfiability, i.e. a nondeterministic algorithm to

prove unsatisfiability, is sufficient. Williams’ framework therefore does not need to as-

sume efficient deterministic satisfiability algorithm, but only efficient co-nondeterministic

satisfiability algorithms.

Jahanjou, Miles and Viola [89] give optimized reductions from C -sat for a

number of circuit classes to k-sat. Reformulated their result using our nondeterministic

extensions, the following result is implicit in their work:

Theorem 6.4.1. We have the following implications from the failure of NETH and



170

NSETH:

1. If NETH is false; i.e., for every ε > 0, 3-sat is in co-nondeterministic time 2εn,

then there exists a problem f ∈ ENP such that f does not have linear-size circuits.

2. If NSETH is false; i.e., there is a δ < 1 such that for every k, k-sat is in co-

nondeterministic time 2δn, then there exists a problem f ∈ ENP such that f does

not have linear-size series-parallel circuits.

3. If there is α > 0 such that nα -sat is in co-nondeterministic time

2n−ω(n/ log logn), then there is a problem f ∈ ENP such that f does not have linear-

size log-depth circuits.

6.5 The nondeterministic time complexity of problems
in P

How could we show that one language is not reducible to another language?

There is an ever-growing web of problems, hypotheses, and reductions that reflect the

fine-grained complexity approach to explaining hardness. Could this structure collapse

into a radically simpler graph, with just a few equivalence classes? If we assume NSETH,

probably not as much as one might hope.

We can broadly categorize computational problems into two sets. In the first

category, the deterministic time complexity is higher than both the nondeterministic and

co-nondeterministic time complexity. In the second category, at least one of nondeter-

minism or co-nondeterminism does not help in solving the problem more efficiently.

Lemma 6.3.1 shows that savings in (N∩ coN)TIME are preserved under deterministic

fine-grained reductions. As a result, we can rule out tight reductions from a problem

that is hard using nondeterminism or co-nondeterminism to a problem that is easy in

(N∩ coN)TIME.



171

If NSETH holds, then k-sat is in the category of problems that do not benefit from

co-nondeterminism. So, any problem that is SETH-hard under deterministic reductions

also falls into this category.

In this section we explore problems that do benefit from (N∩ coN)TIME, i.e. we

give nondeterministic algorithms that are faster than their presumed deterministic time

complexities. This rules out deterministic fine-grained reductions from CNF-sat to these

problems with their presumed time complexities. As a consequence, it is not possible to

show that these problems are SETH-hard using a deterministic reduction.

We begin by formalizing the notion of non-reducibility.

Theorem 6.5.1 (NSETH implies no reduction from CNF-sat). If NSETH and C ∈

(N∩ coN)TIME[T ] for some problem C and time T , then (CNF-sat,2n) 6≤FGR (C,T 1+γ)

for any γ > 0.

Proof. Assume NSETH and (CNF-sat,2n)≤FGR (C,T 1+γ), and C ∈ (N∩ coN)TIME[T ].

By Lemma 6.3.1, preservation of (N∩ coN)TIME savings under fine-grained reduc-

tions, there exists δ > 0 such that CNF-sat ∈ (N∩ coN)TIME[2n(1−δ )]. This contradicts

NSETH, therefore it cannot be the case (under NSETH) that (SAT,2n)≤FGR (C,T ).

Corollary 6.5.1 (NSETH implies no reductions from SETH-hard problems). If NSETH

holds and C ∈ (N∩ coN)TIME[T1], then for any problem B that is SETH-hard under

deterministic reductions with time T2, and γ > 0, we have

(B,T2) 6≤FGR (C,T 1+γ

1 )

Proof. Assume NSETH, and that (B,T2) is SETH-hard. Therefore, we know

(CNF-sat,2n)≤FGR (B,T2) (6.2)



172

Now assume (B,T2)≤FGR (C,T 1+γ

1 ). Then by Lemma 2.4.1, composition of fine-grained

reductions, we have that (CNF-sat,2n)≤FGR (C,T1). But by Theorem 6.5.1 above, this

is impossible under NSETH.

We now give the main result of this section.

Theorem 6.5.2. Under NSETH, there is no deterministic or zero-error fine-grained

reduction from SAT or any SETH-hard problem to the following problems with the

following time complexities for any γ > 0.

• MaxFlow, min-cost MaxFlow, and maximum matching with T (m) = m1+γ

• HittingSet with T (m) = m1+γ

• 3-sum with T (n) = n1.5+γ

• All-pairs shortest path with T (n) = n
3+ω

2 +γ

Note that for graph problems, n refers to the number of vertices, m refers to the

number of edges, and ω is the matrix multiplication exponent.

To prove Theorem 6.5.2 we give both nondeterministic and co-nondeterministic

algorithms for these problems.

6.5.1 Maximum Flow

The maximum flow problem has been an extensively studied problem for decades

and has a large number of theoretical and practical applications. While approximate

maximum flow on undirected graphs has a Õ(m) algorithm [92], where m is the number

of edges, no linear time algorithm is known for the exact version of the problem.

A natural question from the point of conditional hardness is if we can prove a

superlinear lower bound by proving that the problem is SETH-hard.



173

In this section we use the max-flow/min-cut theorem to give a (N∩ coN)TIME

algorithm for the decision version of max-flow with time linear in the number of edges.

Assuming NSETH, we can then conclude that there is no deterministic fine-grained

reduction from any SETH-hard problem to maximum flow with a superlinear time bound.

Problem 46 (MaxFlow). Let G = (V,E) be a connected, directed graph with capacity

constraints, s, t ∈V be vertices and k ∈ R.

The maximum flow problem (MaxFlow) is to decide if there exists a flow from s to

t of value at least k.

The nondeterministic algorithm for maximum flow is straight-forward and the

co-nondeterministic algorithm follows directly for the max-flow/min-cut theorem.

Lemma 6.5.1. MaxFlow ∈ (N∩ coN)TIME[O(m)]

Proof. For the nondeterministic algorithm, nondeterministically guess the flow on each

edge. We can verify in linear time that the value of the flow is at least k, that no edge

flow exceeds the edge capacity, and that for all nodes the inflow is equal to the outflow.

For the co-nondeterministic algorithm, nondeterministically guess a cut (S,T )

such that s ∈ S and t ∈ T with value l where l < k. By the max-flow/min-cut theorem

there is no flow with value strictly greater than l. The value of a cut can be computed in

O(m) time.

This completes the part of Theorem 6.5.2 concerning maximum flow. In contrast,

the SingleSourceMaxFlow problem requires quadratic time under SETH [6]. In the single-

source maximum flow problem we are given a source s and need to output the maximum

flow from s to all other nodes. As a consequence, there is no deterministic fine-grained

reduction from single-source maximum flow to maximum flow under NSETH. Similarly,

the AllPairsMaxFlow problem is SETH-hard at time mn [100].



174

6.5.2 Hitting Set

Problem 47 (HittingSet). Given two families of non-empty sets S and T defined on

universe U, a set S ∈S is a hitting set if it has nonempty intersections with all members

in T . The HittingSet problem accepts input (S ,T ,U) iff

∃S ∈S ∀T ∈T ∃u ∈U ((u ∈ S)∧ (u ∈ T ))

Let the size of input be m = ∑S∈S |S|+∑T∈T |T |. We assume for any u ∈U , we

can in constant time decide if u ∈ S or u ∈ T . It is conjectured, that this problem does not

admit a subquadratic time algorithm [8]. We show that HittingSet and its negation are

both solvable in nondeterministic linear time.

Lemma 6.5.2. HittingSet ∈ (N∩ coN)TIME[O(m)]

HittingSet can be solved nondeterministically in linear time, by guessing an S,

enumerating all T ∈T , and guessing a u ∈ T .

The negation of the HittingSet problem ¬HittingSet, which is defined as

∀S ∈S ∃T ∈T ∀u ∈U ((u /∈ S)∨ (u /∈ T ))

can be solved by the following algorithm.

Algorithm 7: ¬HittingSet

for each S ∈S do
Nondeterministically select T from T
for each u ∈ S do

if u ∈ T then
Reject

Accept.

The algorithm runs in time O(∑S∈S |S|) = O(m).



175

In Section 6.6 we generalize this algorithm for model checking of arbitrary k-

quantifier sentences with at least one existential quantifier and ending with a universal

quantifier.

6.5.3 Min-Cost Maximum Flow

The min-cost maximum flow problem (MinCostMaxFlow) is an important gener-

alization of the MaxFlow problem that also generalizes problems such as shortest path

and bipartite minimum cost perfect matching.

In the MinCostMaxFlow problem on a graph G = (V,E) we consider flow net-

works where the edges e have additional costs ψ(e). The cost of a flow is defined

as

∑
e∈E

ψ(e)flow(e)

Problem 48 (MinCostMaxFlow). Let G = (V,E) be a connected directed graph with

capacity constraints and edge costs, let s, t ∈V be vertices and k,c ∈ R.

The MinCostMaxFlow problem is to decide if there either exists a flow from s to t

of value strictly more than k, or if there is a flow from s to t of value exactly k and cost at

most c.

Orlin [115] gives a O(m2) algorithm for MinCostMaxFlow. In this section con-

sider the question if it is possible to show SETH-hardness of this problem and show

that there is a O(m) nondeterministic and co-nondeterministic algorithm. Therefore,

assuming NSETH, this problem is not SETH-hard under deterministic reductions for any

superlinear time.

It is easy to see that this problem is in NTIME[O(m)] where m is the number

of edges. Simply either guess a maximum flow with minimum cost and verify that

it is indeed a flow with the correct value and cost. We therefore concentrate on the



176

co-nondeterministic time complexity.

Lemma 6.5.3. The MinCostMaxFlow problem is in (N∩ coN)TIME[O(m)].

Proof. Klein [95] showed that a for any flow f , there is a flow of the same value as f but

smaller cost if and only if there is a negative cost cycle in the residual graph.

Furthermore, as observed in the analysis of the Bellmann-Ford algorithm [23, 59],

there is a nondeterministic algorithm for the nonexistence of a negative weight cycle in a

graph. A potential for a weighted graph G = (V,E,w) is a map p : V → R such that for

all edges (u,v) ∈ E we have p(v)≤ p(u)+w(u,v). Bellman and Ford show that there is

a negative weight cycle in G if and only if there is no potential for G.

The co-nondeterministic algorithm for min-cost maximum flow has two cases. If

there is no flow of value k, then we nondeterministically guess a cut of value less than k.

Otherwise, nondeterministically guess a flow of value k with minimum cost. We then

certify that the flow is a maximum flow by guessing a cut of value k. Furthermore we

guess a potential for the residual graph. The cut certifies that there is no flow of value

greater than k, and the potential certifies that there is no maximum flow of smaller cost.

Verifying all nondeterministic guesses can be done in time O(m).

Since the MaxFlow problem is a special case of the MinCostMaxFlow problem,

Lemma 6.5.1 also follows as a corollary of 6.5.3.

6.5.4 Maximum Matching

The MaximumMatching problem in general graphs is one of the most fundamen-

tal problems in computer science.

Problem 49 (MaximumMatching). Given a graph G = (V,E) and a number k, decide if

there is a set of edges M ⊆ E with |M| ≥ k such that each vertex v ∈V is adjacent to at

most one edge in M.



177

The MaximumMatching problem is in time O(m
√

n) [108], matching the time

complexity of the bipartite case [78].

In this section we show that there is a linear time co-nondeterministic algorithm,

and that there is therefore no fine-grained reduction from CNF-sat to MaximumMatching

for any superlinear time, assuming NSETH.

We give an O(m) co-nondeterministic algorithm for this problem. The O(m)

nondeterministic algorithm is trivial.

Lemma 6.5.4. The MaximumMatching problem is in (N∩ coN)TIME[O(m)].

Proof. Edmonds’ Theorem [55] relates maximum matchings of a graph G = (V,E) with

odd set covers. An odd set cover is a map f : V →N, such that each edge is either adjacent

to a vertex v with f (v) = 1, or is adjacent to two vertices u,v such that f (u) = f (v)≥ 2.

Furthermore, for ni = |{v | v ∈V, f (v) = i}| we have ni is odd for all i≥ 2.

For an odd set cover O, let val(O) = n1 +∑i≥2bni
2 c be the value of the set cover.

Edmonds’ Theorem says that for any matching M and any odd set cover O, we have

|M| ≤ val(O). Furthermore, for any maximum matching M there is an odd set cover O

such that |M|= val(O). Therefore a matching M is maximum if and only if there is an

odd set cover O such that |M|= val(O).

The co-nondeterministic algorithm then guesses a maximum matching M and an

odd set cover O such that |M|= val(O).

Verifying that M is a matching and O an odd set cover, as well as computing the

value of the set cover can easily be done in time O(m).

6.5.5 3-SUM

In this section, we consider the 3-sum problem. Recall the definition.



178

Problem 50 (3-sum). Given n integers a1 . . .an in the range [−W,W ] for some W =

poly(n), the 3-sum problem is the problem of determining if there is 1≤ i, j,k ≤ n such

that ai +a j +ak = 0.

The conjecture that the 3-sum problem admits no O(n2−ε) algorithm for any

ε > 0 has proven immensely useful to show the conditional hardness of a large number

of problems (see Section 2.8 for an overview), most of which are not known to be hard

under SETH. A fine-grained reduction from SAT to 3-sum would therefore have a large

impact, proving the 3-sum conjecture under SETH.

We give a subquadratic algorithm for 3-sum in both nondeterministic and co-

nondeterministic time, which rules out a deterministic fine-grained reduction from SAT

to 3-sum under NSETH.

Lemma 6.5.5. 3-sum ∈ (N∩ coN)TIME[Õ(n1.5)]

Proof. There is a trivial constant time nondeterministic algorithm of guessing the triplet

of indices. The more interesting part is to show that there is an efficient nondeterministic

algorithm to show that there is no such triplet.

We nondeterministically guess a proof of the form (p, t,S), such that

• p is a prime number, such that p≤ primen1.5 , where primei is ith prime number.

• t is a nonnegative integer with t ≤ 3cn1.5 logn such that

t = |{(i, j,k) | ai +a j +ak = 0 mod p}| (6.3)

is the number of three-sums modulo p.

• S = {(i1, j1,k1), . . . ,(it , jt ,kt)} is a set of t triples of indices, such that for all

r : 0 < r ≤ t we have air +a jr +akr = 0 mod p and air +a jr +akr 6= 0



179

We first show that such a proof exists. Let us assume that there is no triple of

elements that sum up to zero. Let R be the set of all pairs ((i, j,k), p), such that p is a

prime ≤ primen1.5 and ai +a j +ak = 0 mod p. Then |R| ≤ n3 log(3nc)< 3cn3 logn, as

any integer z can have at most log(z) prime factors. Then, by a simple counting argument,

there indeed exists a prime p0 ≤ primen1.5 , such that the number of pairs of the form

((i, j,k), p0) in R is at most 3cn3 logn
n1.5 = 3cn1.5 logn.

To verify a proof of that form we first need to check that for all r ≤ t:

air +a jr +akr = 0 mod p (6.4)

air +a jr +akr 6= 0 (6.5)

Then we compute the number of 3-sums modulo p and compare it with t. In order

to do this we expand the following expression using Fast Fourier Transform in time Õ(t):

(
∑

i
x(ai mod p)

)3

(6.6)

Let b j be a coefficient before x j. The number of triplets that sum to 0 mod p is

given by b0 +bp +b2p. Hence we need to check that

b0 +bp +b2p = t (6.7)

If it is true, then the proof is accepted, otherwise it is rejected.

The time complexity of verification is Õ(n1.5) for reading and checking the

properties of all the triples and Õ(t) = Õ(n1.5) for counting the number of triples that

sum to 0 modulo p. Therefore the total time complexity is Õ(n1.5).

While we show non-reducibility, a weaker form of SETH-hardness for 3-sum



180

does in fact exists. Williams and Pǎtraşcu [123] show that there is no algorithm for k-sum

with time no(k).

6.5.6 All-pairs shortest paths and related problems

Recall the definition of the all-pairs shortest path problem (APSP).

Problem 51 (All-Pairs Shortest Path (APSP)). Given an undirected, weighted graph

G = (V,E) with weights w : E → [−W,W ] for some W = poly(|V |), compute for every

pair v1,v2 ∈V , compute the length of the shortest path from v1 to v2.

Like the 3-sum conjecture and SETH, the conjecture that APSP does not admit an

O(n3−ε) time algorithm for any ε > 0 has been used successfully to show the conditional

hardness of a number of problems, e.g. [150, 139].

We use a similar technique as in the algorithm for 3-sum to show that the Zero

Weight Triangle problem (ZeroWeightTriangle), which is hard under APSP, admits an

efficient algorithm in (N∩ coN)TIME.

Problem 52 (ZeroWeightTriangle). Given a tripartite graph G(V1,V2,V3,E) with |V1|=

|V2|= |V3|= n and edge weights in [−na,na] for some constant a, the ZeroWeightTriangle

problem is the problem of determining if there is a triangle such that the sum of the edge

weights is 0.

We first show that if the range is small enough, then we can count the number of

zero weight triangles efficiently.

Lemma 6.5.6. For a prime p, there is a deterministic algorithm for counting the number

of zero weight triangles mod p in time O(nω p)

Proof. For i ∈ GF(p), let q(i) be the polynomial xi. Let A be the weight matrix of the

input graph G ( mod p). We define matrix B as B[i, j] = q(A[i, j]). For a polynomial



181

r and integer i, let bi(r) be the coefficient of xi in r. Every triangle with weight zero

mod p has weight either 0, p and 2p. We have that b j(B3[i, i]) is the number of triangles

of weight j that involve vertex i. Therefore

n

∑
i=1

∑
j∈{0,p,2p}

b j(B3[i, i]) = 3t (6.8)

where t is the number of zero weight triangles modulo p.

The time to compute B3 is O(nω p log p) if we multiply the polynomials using

Fast Fourier Transform.

In particular, we will be using Lemma 6.5.6 to verify that our nondeterministic

guess of the number of false positives is correct.

Lemma 6.5.7. The Zero Weight Triangle Problem is in (N∩ coN)TIME[Õ(n
ω+3

2 )].

Proof. As for 3-sum, the nondeterministic algorithm is trivial and we concentrate on the

co-nondeterministic algorithm.

Let µ = 3−ω

2 . Further let c be a large constant such that there are at least nµ

primes in the range R = [nµ ,cnµ logn]. We assume that there is no zero weight triangle

and consider any fixed triangle. Since all edge weights are in the range [−na,na], the

total weight of the triangle is in the range [−3na,3na] and the number of primes p ∈ R

such that the triangle has weight 0 mod p is at most log(3na)/ log(nµ)< 2
µ

a. Since R

contains at least nµ primes, there is a prime p ∈ R such that the number of triangles with

weight 0 mod p is at most 2
µ

an
3+ω

2 .

The nondeterministic algorithm now proceeds as follows: Nondeterministically

pick p as above. By Lemma 6.5.6 we can deterministically count the number t of

triangles with weight 0 mod p in time O(nω p log p) = Õ(n
3+ω

2 ). Nondeterministically

pick t distinct triangles and check that each of them has weight w 6= 0 with w = 0 mod p.



182

The total time is bounded by Õ(n
3+ω

2 ) as claimed.

Corollary 6.5.2. APSP ∈ (N∩ coN)TIME[Õ(n
3+ω

2 )].

Proof. A deterministic fine-grained reduction from the problem of finding a negative

weight triangle to ZeroWeightTriangle can be found in [139], such that the negative

weight triangle problem is also in (N∩ coN)TIME[Õ(n
3+ω

2 )].

Finally, [150] give a deterministic fine-grained reduction from APSP to the nega-

tive weight triangle problem with time Õ(n2T (n1/3)), where T (n) is the time complexity

of the negative weight triangle problem.

Instead of applying this reduction directly, which would still give a subcubic

nondeterministic upper bound for APSP, we instead modify their reduction to a nondeter-

ministic reduction that preserves the savings in the exponent. The reduction from [150]

loses savings in the exponent when reducing from min-plus product to negative weight

triangle. The fine-grained reduction from APSP to min-plus product is folklore and does

not change the exponent.

For two matrices A and B the min-plus product C is the matrix such that C[i, j] =

mink{A[i,k]+B[k, j]}. Given an instance of min-plus product, nondeterministically guess

C as well as a matrix K such that K[i, j] = argmink{A[i,k]+B[k, j]}. We can easily check

that C[i, j] = A[i,K[i, j]]+B[K[i, j], j] for all i and j, which proves that none of the entries

in C are too large.

To verify none of the entries in C are too small, we construct a complete n×n×n

tripartite graph G = (V1,V2,V3,E) such that matrix −A is the weight matrix for the edges

between V1 and V2, −B corresponds to the weights between V2 and V3, and C corresponds

to the weights between V1 and V3. There are i, j,k such that C[i, j] < A[i,k]+B[k, j] if

and only if there is a negative weight triangle in this graph.

We use this reduction along with the co-nondeterministic algorithm for the



183

ZeroWeightTriangle problem above to get a nondeterministic algorithm for APSP with

the claimed time complexity.

Note that [150] in fact give a sizable list of problems that are equivalent to APSP

under subcubic deterministic fine-grained reductions (including negative weight triangle,

but not zero weight triangle). Our non-reducibility result therefore applies to all of these

problems.

6.6 Characterizing the quantifier structure of SETH-
hard graph problems

There are many problems within P that are known to be SETH-hard, but few of

them are graph problems. And of the ones that are, they tend to have similar logical

forms. For instance, k-DominatingSet [123] is definable by a ∀k∃ quantified formula;

GraphDiameter-2 and BipartiteGraphDominatedVertex [29] are definable by ∀∀∃ quan-

tified formulas. Here we study the relations between SETH-hardness and the logical

structures of model checking problems. A result by Ryan Williams [145] explored the

first-order graph properties on dense graphs, while here we look into sparse graphs whose

input is a list of edges. For a more expansive treatment of the fine-grained complexity of

sparse graph problems based on their quantifier structure, see [67].

We define graph property quite broadly. The input to a graph property is a many-

sorted universe that we view as sets of vertices, together with a number of unary relations

(node colors), and binary relations, viewed as different categories or colors of edges.

The binary relations are not symmetric in general. We specify the problem to be solved

by a first order sentence. Let ϕ be a first order sentence in prenex normal form, with k

quantifiers:

ϕ = Q1x1 ∈ X1,Q2x2 ∈ X2, . . .Qkxk ∈ Xkψ (6.9)



184

or shortened as

ϕ = Q1x1Q2x2 . . .Qkxkψ (6.10)

where ϕ is a quantifier-free formula whose atoms are unary or binary predicates on

x1, . . . ,xk.

An instance of the FirstOrderModelChecking problem of a formula ϕ with k ≥ 3

quantifiers specifies sets X1, . . .Xk, where variable xi is an element of set Xi, as well as

all the unary and binary relations that occur in ϕ . We assume without loss of generality

that the sets Xi are disjoint and that the domain of any predicate is restricted to one

pair (Xi,X j). We can always duplicate elements and adjust the corresponding relations

accordingly. We also assume equality is one of the relations, so we can tell when xi = x j.

To reformulate the problem as a graph problem, we view he sets X1, . . . ,Xk as the sets

of nodes in a k-partite graph, and the binary predicates as (colored) edges, i.e. for some

predicate P, if P(xi,x j) is true then there is an edge between the nodes xi and x j. We refer

to the k-partite graph with edges defined by predicate P as GP, and the colored union of

graphs defined on all predicates as G.

We assume that the input is given as follows: For each unary relation, we are

given a Boolean vector indexed by the vertices saying whether the relation holds, and for

each binary predicate, the list representation of the corresponding directed graph. We

want to decide if ϕ is true for the input model.

Examples of this problem include k-Clique, which is defined by

ϕ = ∃x1 . . .∃xk
∧

i, j∈{1,...,k},i 6= j

E(xi,x j) (6.11)

k-DominatingSet, defined by

ϕ = ∃x1 . . .∃xk∀xk+1 (E(x1,xk+1)∨·· ·∨E(xk,xk+1)) (6.12)



185

and GraphRadius2, defined by

ϕ = ∃x1∀x2∃x3 (E(x1,x3)∧E(x3,x2)) (6.13)

We let n = maxi |Xi| be the maximum size of the node parts, and m be the number

of edges in the union of the graphs. The size is n+m, but for convenience, we will

assume m > n and use m as the size.

The maximum deterministic complexity of a k-quantifier formula for k ≥ 2 is

O(mk−1). For k = 2, this is just linear in the input size, so matching lower bounds follow.

So the interesting case is k ≥ 3. If SETH is true, some formulas require approximately

this time. But if NSETH holds, all such formulas that are SETH hard are of the same

logical form. This is made precise as follows:

Theorem 6.6.1. Let k ≥ 3. If NSETH is true, then there is a k-quantifier formula whose

model checking problem is O(mk−1) SETH-hard, and all such formulas have the form

∀k−1∃ or ∃k−1∀.

Theorem 6.6.1 comes directly from the following lemmas:

Lemma 6.6.1. There are graph properties with ∀k−1∃ and ∃k−1∀ structure that are

SETH-hard for time O(mk−1).

Proof. The (k−1)-OrthogonalVectors problem is equivalent to the graph problem

∃x1 . . .∃xk−1∀xk (P(x1,xk)∧·· ·∧P(xk−1,xk)) (6.14)

Section 2.6 gives a proof of the SETH-hardness of (dense) k-OrthogonalVectors for k≥ 2.

Note that the sparse formulation where the parameter is the number of edges m is more

general than the dense version and SETH-hardness therefore translates. The negation of

k-OrthogonalVectors is also SETH-hard and has a ∀k∃ quantifier structure.



186

On the other hand if a problem is of any form other than ∀k−1∃ or its negation,

we will show it has both smaller nondeterministic and co-nondeterministic complexity.

We will assume without loss of generality that the outermost quantifiers is universal. We

can handle the other case by simply negating the problem. A problem that does not have

an ∀k−1∃ structure either has exactly one existential quantifier, but not in the innermost

position, no existential quantifiers, or at least two existential quantifiers.

Lemma 6.6.2. If ϕ has more than one existential quantifier, then it can be solved in

nondeterministic time O(mk−2). If ϕ has more than one universal quantifier, then it can

be solved in co-nondeterministic time O(mk−2)

Proof. We concentrate on the case with more than one existential quantifier. The other

case is symmetric.

These problems can be solved by guessing the existentially quantified variables,

and exhaustive search on universally quantified variables. Because there are at most k−2

universal quantifiers, the algorithm runs in nondeterministic time O(mk−2). Note that we

operate on the sparse representation of the predicates. We assume that we are given the

list of pairs that satisfy any predicate in a sorted order that allows us to do this exhaustive

search without overhead.

Symmetrically, if ϕ has more than one universal quantifier, then it can be solved

in co-nondeterministic time O(mk−2). In particular, since k ≥ 3, the model checking

problem is always easy either nondeterministically or co-nondeterministically.

Lemma 6.6.3. If ϕ has exactly one existential quantifier, but it is not on the innermost

position, then it can be solved in (N∩ coN)TIME[O(mk−2)]. Symmetrically, if ϕ has

exactly one universal quantifier, but it is not on the innermost position, then it can be

solved in (N∩ coN)TIME[O(mk−2)].



187

Proof. We only show the case with one existentially quantified variable. Since k≥ 3, the

problem is in coNTIME[O(mk−2)] by Lemma 6.6.2.

Let the existentially quantified variable be x j.

For a pair of nodes (xu,xv), we define its color χ(xu,xv) to be binary strings corre-

sponding to the truth values of all predicates on them. By preprocessing we can set up a

table that allows us to check whether χ(xu,xv) = c for given xu,xv and color c in constant

time. We also define χ(xk|x1 . . .xk−1) to be the concatenation of χ(x1,xk), . . . ,χ(xk−1,xk).

For colors composed of only 0 (where all the related predicates are false), we call them

“background”.

Our algorithm can count the number of xk’s with color χ(xk|x1 . . .xk−1) = c

for all (x1, . . . ,xk−1) and c in time O(mk−2). The main idea of the algorithm is to

nondeterministically guess x j and count valid values of xk, so that it saves the exhaustive

search on x j and xk.

1. For each combination of (x1, . . . ,x j−1) nodes, we nondeterministically bundle a

fixed x j value to it. This takes time O(m j−1), which is at most O(mk−2) because

j < k. In the rest of this algorithm, given any (x1, . . . ,x j−1) values we can find

their corresponding x j value in constant time.

2. We do a (k−2)-layer nested loop. On each layer we loop through all (xi,xk) edges

where xi is a variable other than x j or xk. Then inside all the loops, for each xk in

the (k−2) current (xi,xk) edges, we record the color χ(xk|x1 . . .xk−1), where the

values of x j come from the current (x1, . . . ,x j−1).

Then after the loops we can count the number of xk’s of for each (x1, . . . ,xk−1) and

each color.

This step can be done in time O(mk−2).



188

3. The previous step did not count the xk’s that only appear in (x j,xk) edges, i.e.

whose χ(xk|x1 . . .xk−1) is all-zero on all non-(x j,xk) predicate positions, but not

all-zero on some (xk,x j) predicate positions. We will count these xk’s in this step.

For each x j, we can enumerate all the (x j,xk) edges to count the number of xk’s

where χ(x j,xk) = c jk for any not all-zero c jk. Also, from the previous step, we

can count the number of xk’s s where χ(xk|x1 . . .xk−1) is not all-zero on some non-

(x j,xk) predicate positions, and also equals ci j on its (x j,xk) predicate positions.

By subtraction we can get the number of xk’s, where χ(xk|x1 . . .xk−1) is all-zero

on non-(x j,xk) predicate positions, and equals ci j on its (x j,xk) predicate positions.

Similarly as the previous step, this process runs in time O(mk−2).

4. Now we have counted the xk’s with all non-background colors for all (x1, . . . ,xk−1).

The number of xk’s where χ(xk|x1 . . .xk−1) is background can be computed by |Xk|

subtracting the numbers of all non-background xk’s.

5. Finally, for all (x1, . . . ,xk−1), we sum the number of xk’s of all colors that satisfy

ϕ . If it always equals |Xk|, then the algorithm accepts.

The last case, where either all quantifiers are existential or all quantifiers are

universal is easy deterministically and therefore also not a candidate for SETH-hardness,

independent of NSETH.

Lemma 6.6.4. If all quantifiers are existential, or all quantifiers are universal, then the

problem can be solved in deterministic time O(mk−1.5).

Proof. This case is computationally easy even deterministically. We concentrate on the

case where all quantifiers are existential. For simplicity, we will restrict all predicates to

be binary. The algorithms can easily be modified to work for unary predicates.



189

Assume there is at most one predicate on each pair of variables. Otherwise for a

pair of variable we can take the disjunction of all the predicates to be the value of the

only predicate. Let the only predicate be E.

First, we write quantifier-free part ψ in DNF with t terms, i.e. ψ =
∨t

i=1 ψi,

and then split its terms, so that ϕ =
∨t

i=1(∃x1 . . .∃xkψi). Thus the problem becomes a

constant number of model checking sub-problems with form ∃x1 . . .∃xkψi where ψi is a

conjunction of either positive or negative predicates.

Let the number of predicates be p. We assume some canonical order on the

predicates, so that all truth values for a tuple of vertices (x1, . . . ,xk) correspond to strings

in {0,1}p. We call the strings colors, denoted by χ(x1, . . . ,xk). Specifically, the color 0p

(where all predicates are false) is called the background color.

For each ψi, we first find all colors satisfying it, and then for each satisfying color

c, we use the following algorithm to count the number of (x1, . . . ,xk) tuples such that

χ(x1, . . . ,xk) = c.

Case 1: The color c contains at least two positive predicates.

Case 1-1: There exists four distinct variables v,w,x,y such that E1(v,w) and

E2(x,y) are true in c. Then we exhaustively search all k−4 variables other

than v,w,x,y in time O(nk−4) = O(mk−4), and enumerate all E1(v,w) and

E2(x,y) edges, which takes time O(m2). The overall running time is O(mk−2).

For each k-tuple enumerated, if χ(x1, . . . ,xk) = c, we increment the counter

for color c.

Case 1-2: There are three distinct variables x,y,z such that E1(x,y) and E2(y,z)

are true in c. We take time O(mk−3) to exhaustively search all k− 3 other

variables. Then we consider the x nodes of large and small degree separately.



190

• For x’s whose degree is at most
√

m, we enumerate all E1(x,y) edges.

Then for each y, we enumerate all (y,z) edges. The running time is

O(∑x deg(x))≤ O(m
√

m) = O(m1.5).

• For x’s whose degree is greater than
√

m, we enumerate all such x and

all (y,z) edges. Because there are at most O(m/
√

m) =
√

m such x’s, the

running time is O(
√

mm) = O(m1.5).

For each k-tuple enumerated, check if χ(x1, . . . ,xk) = c. The overall running

time is O(mk−3 m1.5) = O(mk−1.5).

Case 2: The color c contains only one positive predicate. Let the positive predicate be

E(x,y).

We can count the number of tuples with χ(x1, . . . ,xk) = c indirectly by subtracting

the number of tuples also satisfying another predicate from the total number of

predicates satisfying E(x,y). As Case 1 shows, for colors where at least two

predicates are true, we can count the number of tuples with that color. Also, we

can easily compute the number of k-tuples satisfying E(x,y) regardless of other

predicates, by simply multiplying the number of E(x,y) edges with the sizes of all

other sets. Because there are only a constant number of colors, the running time is

O(mk−1.5).

Case 3: The color c is the background color. Similar to Case 2, we compute the number

of (x1, . . . ,xk) of all other colors, and subtract it from the total number of tuples.

The running time is O(mk−1.5).

Thus, only ∀k−1∃ formulas require O(mk−1) nondeterministic time, and by look-

ing at the complements, only ∃k−1∀ formulas require O(mk−1) co-nondeterministic



191

time. Thus, assuming NSETH, only these two types of first-order properties might be

SETH-hard for the maximum difficulty of a k-quantifier formula.

6.7 Consequences for verification of solutions

Besides implying that some problems are not SETH-hard, NSETH also implies

some new lower bounds on problems in P. Namely, if NSETH is true, then any SETH-

hard problem with a deterministic reduction such as Fréchet distance, edit distance, and

LongestCommonSubsequence also require quadratic co-nondeterministic time, i.e. the

problem of showing that there is no solution better than a given value is as hard as solving

the problem deterministically. This immediately implies that, even given a solution,

testing optimality requires quadratic time. We can formalize this as follows:

Theorem 6.7.1. Let F(x,y) be some function that can be computed in time TF(|x|+ |y|)≥

|x|+ |y|. We assume |y|= l(|x|) for some l and define n = |x|+ l(|x|). Let OptF denote

the optimization problem for F: Given x, find y such that F(x,y) is maximized. The

verification problem VerF is: Given x and y, is y an optimal solution for OptF , i.e. is

there no y′ with F(x,y′)> F(x,y)? Assume that OptF is SETH-hard at some time bound

T (n) which is greater than T 1+γ

F (n) for some γ > 0. Then if NSETH is true, VerF cannot

be solved in any time T ′ so that T ′(n)< T 1−ε(n) for any ε > 0.

Proof. If we assume for the sake of contradiction that VerF can be solved in such a time

T ′, then we can solve OptF by nondeterministically guessing the witness y and verifying

that it is optimal. This takes time T 1−ε(n), hence using the fine-grained reduction from

CNF-sat to OptF we get both a nondeterministic and co-nondeterministic algorithm for

CNF-sat that contradicts SETH.

So NSETH gives us a way to argue that not only finding but also verifying optimal

solutions is computationally intensive.



192

Verification problems have the property that they are nondeterministically easy.

Similarly, many natural problems the property that they are easy either nondeterministi-

cally or co-nondeterministically. A natural problem that is an exception is the StablePair

problem discussed in Section 4.5.4.

6.8 Conclusions and open problems

A theme running through computational complexity is that looking at general rela-

tionships between models of computing and complexity classes can frequently shed light

on the difficulty of specific problems. In this chapter, we introduce this general technique

to the study of fine-grained complexity by comparing nondeterministic complexities of

problems. This raises the more general question of what other notions and models of

complexity might be useful in distinguishing the fine-grained complexity of problems.

For example, we show that neither 3-sum nor APSP can be SETH-hard if NSETH holds.

This still leaves open the possibility that the two conjectures are equivalent to each other

(if not to SETH). One might be able to prove such an equivalence, or give evidence

against it by showing a different notion of complexity that distinguishes the two and is

preserved by fine-grained reductions.

Chapter 6 is based on material as it appears in the following publications: Marco

L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and

Stefan Schneider. “Nondeterministic extensions of the strong exponential time hypothesis

and consequences for non-reducibility.” In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science, pp. 261-270. ACM, 2016. [36] The author

of this dissertation was a principal author of this publication. Material from Chapter 6 is

currently in preparation for submission for publication, by Marco L. Carmosino, Jiawei

Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. The

author of this dissertation was a principal author of this publication. We would like



193

to thank Amir Abboud, Karl Bringmann, Bart Jansen, Sebastian Krinninger, Virginia

Vassilevska Williams, Ryan Williams and the anonymous reviewers for many helpful

comments on the material in this Chapter 6.



Appendix A

Dramatis Personae

We take a problem-centric approach. In the resource-centric approach to complex-

ity theory it is sometimes difficult to keep the overview over all the complexity classes,

giving rise to websites such as the complexity zoo [1]. Similarly, in our problem-centric

approach the space of problems is large. This chapter aims to collect all the definitions

and key results of problems mentioned anywhere in this dissertation. Note that in the

PDF version of this document, all problem names are links to the respective definition in

this chapter.

A.1 Satisfiability Problems

Problem 53 (C -sat). The satisfiability problem for Boolean circuits on n variables in

the circuit class C ⊆ P/Poly

• Upper Bounds: Varies on the circuit class C . In general Õ(2n)

• Lower Bounds: SETH-hard at time 2n for any C that contains all k-CNF formulas

Problem 54 (k-sat). C -sat where C is the set of all k-CNF formulas, Boolean formulas

in conjunctive normal form on n variables and with clause width at most k.

• Upper Bounds: 2(1−1/O(k))n [117, 130]

194



195

• Lower Bounds: SETH-hard at time 2n for k = ω(1) by definition of SETH

Problem 55 (Sparse-k-sat). C -sat where C is the set of all k-CNF formulas on n vari-

ables, with clause width at most k and at most f (k)n clauses for some function f .

• Upper Bounds: 2(1−1/O(k))n [117, 130]

• Lower Bounds: SETH-hard at time 2n for k = ω(1) by by the sparsification

lemma [85]

Problem 56 (CNF-sat). C -sat where C is the set of all CNF formulas, Boolean formulas

in conjunctive normal form on n variables and cn clauses.

• Upper Bounds: 2(1−1/O(logc))n [131]

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes Sparse-k-sat

Problem 57 (AC0-sat). C -sat where C is the set of all AC0 formulas, constant-depth

Boolean circuits over AND and OR on n variables. The problem is parametrized by the

number of gates cn and the depth d.

• Upper Bounds: 2(1−1/O(logc+d logd)d−1)n [81]

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes CNF-sat

Problem 58 (ACC0-sat). C -sat where C is the set of all ACC0 formulas, constant-depth

Boolean circuits over AND, OR and MOD6 on n variables. The problem is parametrized

by the number of gates m = 2nδ

and the depth d.

• Upper Bounds: O(2n−nε
δ ,d
) [147]

• Lower Bounds: SETH-hard at time 2n for m = ω(n) as it generalizes AC0-sat



196

Problem 59 (DeMorgan-sat). C -sat where C is the set of all deMorgan formulas,

Boolean circuits over AND and OR of fanin 2 on n variables. The problem is parametrized

by the number of leaves m = cn.

• Upper Bounds: 2(1−1/poly(c))n [128]

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes Sparse-k-sat

Problem 60 (Succinct-k-sat). Given a circuit C ∈ P/Poly on n variables, decide if the

truth table of C is an encoding of a satisfiable k-CNF formula.

• Upper Bounds: Õ(22n
)

• Lower Bounds: NEXP-complete

We consider a number of circuit classes with weighted threshold gates (THR).

Problem 61 (0-1-ILP). C -sat where C is the set of all AND◦THR circuits on n variables

and with cn bottom-level gates.

• Upper Bounds: 2(1−1/O(c log2 c))n [80, 38], see Chapter 3

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes CNF-sat

Problem 62 (max-sat). C -sat where C is the set of all THR◦AND circuits on n variables

and with cn bottom-level gates.

• Upper Bounds: 2(1−1/O(
√

c))n [42]

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes CNF-sat

Problem 63 (max-k-sat). C -sat where C is the set of all THR ◦AND circuits on n

variables and bottom-level fan-in k.



197

• Upper Bounds: If k = 2, O(2ωn/3), where ω < 3 is the matrix multiplication

exponent [142]

• Lower Bounds: SETH-hard at time 2n for k = ω(1) as it generalizes k-sat

Problem 64 (DepthTwoThr-sat). C -sat where C is the set of all THR ◦THR circuits

on n variables and with m bottom-level gates.

• Upper Bounds: 2n−1/poly(m) [136]

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes CNF-sat

Problem 65 (SparseDepthTwoThr-sat). C -sat where C is the set of all THR ◦THR

circuits on n variables and with cn wires.

• Upper Bounds: 2(1−1/cO(c))n [42], see Chapter 3

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes Sparse-k-sat

Problem 66 (SymFormula-sat). C -sat where C is the set of all formulas on n variables

and with cn wires where the gates are arbitrary (unweighted) symmetric gates. A gate is

symmetric if the output only depends on the number of inputs that are 1.

• Upper Bounds: 2(1−1/cO(c2))n [84], see Chapter 3

• Lower Bounds: SETH-hard at time 2n for c = ω(1) as it generalizes Sparse-k-sat

A.2 Vector Problems

Problem 67 (OrthogonalVectors). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d , deter-

mine if there is i, j ∈ [n] satisfying 〈ai,b j〉= 0.



198

• Upper Bounds: n2−1/O(logc) where c = d/ logn [7]

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) [142]

Problem 68 (k-OrthogonalVectors). Given n vectors x1, . . . ,xn ∈ {0,1}d , determine if

there is a set of k indices i1, . . . , ik, such that for each dimension j ∈ [d] there is a l such

that xil [ j] = 0.

• Upper Bounds: nk−1/O(logc) where c = d/ logn [7]

• Lower Bounds: SETH-hard at time nk for d = ω(logn) [142], see Section 2.6

Problem 69 (MinInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d and an integer

r ∈ N, determine if there is a pair i, j satisfying 〈ai,b j〉 ≤ r.

• Upper Bounds: n2−1/O(c log2 c) [15]

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) as it directly generalizes

OrthogonalVectors

Problem 70 (MaxInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ {0,1}d and an integer

r ∈ N, determine if there is a pair i, j satisfying 〈ai,b j〉 ≥ r.

• Upper Bounds: n2−1/O(c log2 c) [15]

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) [15], see Section 2.7

All problems above on Boolean vectors have integer and real variants. We allow

both positive and negative values and for the integer variants we typically assume that

the absolute values are bounded by some W = poly(n). For the real variants, we assume

a real RAM model, and for the integer variants a word RAM model with such that any

integer fits into a constant number of words. In this section we only list the variants that

we actually use in at some point in this dissertation.



199

Problem 71 (IntegerOrthogonalVectors). Given a1, . . . ,an,b1, . . . ,bn ∈ [−W,W ]d , deter-

mine if there is a pair i, j satisfying 〈ai,b j〉= 0.

• Upper Bounds: Õ(n2)

• Lower Bounds: SETH-hard at time n2 for d = ω(log logn) [141]

Problem 72 (IntegerMinInnProd). Given a1, . . . ,an,b1, . . . ,bn ∈ [−W, ,W ]d and a natu-

ral number r ∈ N, determine if there are i, j satisfying 〈ai,b j〉 ≤ r.

• Upper Bounds: O(n2−1/d d
2 e) [106]

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) as it directly generalizes

OrthogonalVectors

Since we allow for negative values, the maximization version is triavially equiva-

lent.

Problem 73 (IntegerMaxInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈ [−W,W ]d and

an integer r ∈ N, determine if there is a pair i, j satisfying 〈ai,b j〉 ≥ r.

• Equivalent to IntegerMinInnProd

Problem 74 (RealMaxInnProd). Given vectors a1, . . . ,an,b1, . . . ,bn ∈Rd and an integer

r ∈ N, determine if there is a pair i, j satisfying 〈ai,b j〉 ≥ r.

• Upper Bounds: O(n2−1/d d
2 e) [106]

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) as it is generalizes

IntegerMaxInnProd



200

Problem 75 (AllInnProd). Given a1, . . . ,an ∈ [−W,W ]d and b1, . . . ,bn ∈ [−W,W ]d , de-

termine for all j ∈ [n], the value mini∈[n]〈ai,b j〉.

• Upper Bounds: O(n2−1/d d
2 e), see Chapter 5

• Lower Bounds: SETH-hard at time n2

Problem 76 (VectorDomination). Given a1, . . . ,an,b1, . . . ,bn ∈ Rd determine if there is

i, j such that ai ≤ b j component-wise.

• Upper Bounds: n2−1/(c log2 c) where c = d/ logn [80, 38], see Chapter 3

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) as it is generalizes

OrthogonalVectors

Problem 77 (MostDominantVectors). Given a1, . . . ,an,b1, . . . ,bn ∈ Rd and an integer

k, determine if there is a pair i, j such that ai ≤ b j in at least k components.

• Upper Bounds: 2dn2−1/O(c log2 c) where c = d
logn by a trivial reduction to the

VectorDomination problem

• Lower Bounds: SETH-hard at time n2 for d = ω(logn) as it is generalizes

OrthogonalVectors

Problem 78 (SetContainment). Given sets a1, . . . ,an,b1, . . . ,bn ⊆ [d] given as vectors

in {0,1}d determine if there are i, j such that ai ⊆ b j.

• Equivalent to OrthogonalVectors



201

A.3 Least Weight Subsequence Problems

The least weight subsequence problem and its succinct instantiations are discussed

in Chapter 5.

Problem 79 (LWS). We are given weights wi, j ∈ [−W,W ]∪{∞} for every 0≤ i < j ≤ n

and an arbitrary function g : N→ N. The LWS problem is to determine F [n] which is

defined by the following DP formulation.

F [0] = 0,

F [ j] = min
0≤i< j

g(F [i])+wi, j for j = 1, . . . ,n (A.1)

• Upper Bounds: O(n2) by definition

• Lower Bounds: Input size Ω(n2) in general

Problem 80 (LowRankLWS). LowRankLWS is the LWS problem where the weight matrix

W is of rank d� n. The input is given succinctly as two matrices A and B, which are

(n×d)- and (d×n)-matrices respectively, and W = A ·B.

• Equivalent to IntegerMinInnProd

Problem 81 (CoinChange). Given a weight sequence x1, . . . ,xn with xi ∈ [−W,W ]∪{∞},

that is the coin with value i has weight xi. Find the weight of the multiset of denominations

I such that ∑i∈I i = n and the sum of the weights ∑i∈I xi is minimized.

• Equivalent to (min,+)-Convolution



202

Problem 82 (oiCoinChange). The output-intensive version of CoinChange is to deter-

mine, given an input to CoinChange, the weight of the optimal multiset such that the

denominations sum up to j for all 1≤ j ≤ n.

• Equivalent to (min,+)-Convolution

Problem 83 (UnboundedKnapsack). We are given a sequence of profits p = (p1, . . . , pn)

with pi ∈ [0,W ], that is the item of size i has profit pi. Find the total profit of the multiset

of indices I such that ∑i∈I i≤ n and the total profit ∑i∈I pi is maximized.

• Equivalent to (min,+)-Convolution

Problem 84 (UnboundedSubsetSum). Given a subset S⊆ [n], determine whether there

is a multiset of elements of S that sums up to exactly n.

• Upper Bounds: Õ(n)

Problem 85 (ChainLWS). Fix a set X of objects and a relation R⊆ X×X. The Weighted

Chain Least-Weight Subsequence Problem for R, denoted ChainLWS(R), is the following

problem: Given data items x0, . . . ,xn ∈X, weights y1, . . . ,yn−1 ∈ [−W,W ], find the weight

of the increasing sequence i0 = 0< i1 < i2 < .. . < ik = n such that for all j with 1≤ j≤ k

the pair (xi j−1,xi j) is in the relation R and the weight ∑
k−1
j=1 yi j is minimized.

• Upper Bounds: O(n2)

• Lower Bounds: P/Poly-SETH-hard in general

Problem 86 (NestedBoxes). Given n boxes in d dimensions, given as non-negative, d-

dimensional vectors (b1, . . . ,bn), find the longest chain such that each box fits into the

next (without rotation). We say box that box a fits into box b if for all dimensions 1≤ i≤ d,

ai ≤ bi.



203

• Equivelent to VectorDomination

Problem 87 (SubsetChain). Given n sets from a universe U of size d, given as Boolean,

d-dimensional vectors (b1, . . . ,bn), find the longest chain such that each set is a subset of

the next.

• Equivalent to OrthogonalVectors

Problem 88 (LIS). Given a sequence of n integers x1, . . . ,xn, compute the length of the

longest subsequence that is strictly increasing.

• Upper Bounds: Õ(n)

Problem 89 (ConcaveLWS). Given an LWS instance in which the weights satisfy the

quadrangle inequality

wi, j +wi′, j′ ≤ wi′, j +wi, j′ for i≤ i′ ≤ j ≤ j′,

solve it. The weights are not explicitly given, but each wi, j can be queried in constant

time.

• Upper Bounds: O(n) [140]

Problem 90 (AirplaneRefueling). Given airport locations on a line, and a preferred

distance per hop k (in miles), we define the penalty for flying k′ miles as (k− k′)2. The

goal is then to find a sequence of airports starting at the first airport and terminating at

the last airport that minimizes the sum of the penalties.

• Upper Bounds: O(n), special case of ConcaveLWS



204

Problem 91 (PrettyPrinting). Given a string consisting of n space-separated words, and

a line length M, split the string into lines l1, . . . , lm at the spaces, such that the penalty

∑
m
i=1(li−M)2 is minimized.

• Upper Bounds: O(n), special case of ConcaveLWS

Problem 92 (1DKMeansClustering). Given n points on a line x1, . . . ,xn ∈ R and a pa-

rameter k, find k points y1, . . . ,yk that minimize

n

∑
i=1

min
j
(xi− y j)

2 (A.2)

• Upper Bounds: O(n logn+ kn) [69]

Problem 93 (Static-LWS(W)). Fix an instance of LWS(W). Given intervals of indices

I := {a+ 1, . . . ,a+N} and J := {a+N + 1, . . . ,a+ 2N} with a,N such that I,J ⊆ [n],

together with the values F [a+ 1], . . . ,F [a+N], the Static Least-Weight Subsequence

Problem (Static-LWS) asks to determine

F ′[ j] := min
i∈I

F [i]+wi, j for all j ∈ J.

• At least as hard as the corresponding LWS instantiation

Problem 94 (SMAWK). A matrix M is called totally monotone if for all i, j,a,b such

that i < j and a < b we have M ja < Mia =⇒ M jb < Mib.

Given a totally monotone n× n matrix, find for every column the minimum

element.

• Upper Bounds: O(n) [12]



205

A.4 Graph Problems

Problem 95 (MaxFlow). Let G = (V,E) be a connected, directed graph with capacity

constraints, s, t ∈V be vertices and k ∈ R.

The maximum flow problem (MaxFlow) is to decide if there exists a flow from s to

t of value at least k.

• Upper Bounds: O(|V ||E|) [116]

Problem 96 (SingleSourceMaxFlow). Given a sparse, connected, directed graph G =

(V,E) with n = |V |, |E|= Õ(n) and with capacity contraints in [n], and s ∈V a vertex,

find for each t ∈V the value of the maximum flow from s to t.

• Lower Bounds: SETH-hard at time n2 [6]

Problem 97 (AllPairsMaxFlow). Given a connected, directed graph G = (V,E) with

n = |V |, |E| = m and with (unbounded) capacity contraints, find for each s, t ∈ V the

value of the maximum flow from s to t.

• Upper Bounds: O(mωn) [44]

• Lower Bounds: SETH-hard at time mn [100]

Problem 98 (MinCostMaxFlow). Let G = (V,E) be a connected directed graph with

capacity constraints and edge costs, let s, t ∈V be vertices and k,c ∈ R.

The MinCostMaxFlow problem is to decide if there either exists a flow from s to t

of value strictly more than k, or if there is a flow from s to t of value exactly k and cost at

most c.

• Upper Bounds: O(|E|2) [115]



206

Problem 99 (MaximumMatching). Given a graph G = (V,E) and a number k, decide if

there is a set of edges M ⊆ E with |M| ≥ k such that each vertex v ∈V is adjacent to at

most one edge in M.

• Upper Bounds: O(|E|
√
|V |) [108]

Problem 100 (All-Pairs Shortest Path (APSP)). Given an undirected, weighted graph

G = (V,E) with weights w : E → [−W,W ] for some W = poly(|V |), compute for every

pair v1,v2 ∈V , compute the length of the shortest path from v1 to v2.

• Upper Bounds: n3/2
√

Ω(logn) [144]

• Lower Bounds: No algorithm with time O(n3−ε) for any ε > 0 according to the

APSP conjecture [61]

Problem 101 (ZeroWeightTriangle). Given a tripartite graph G(V1,V2,V3,E) with |V1|=

|V2|= |V3|= n and edge weights in [−na,na] for some constant a, the ZeroWeightTriangle

problem is the problem of determining if there is a triangle such that the sum of the edge

weights is 0.

• Lower Bounds: 3-sum-hard (under randomized reductions) and APSP-hard [139,

150] at time n3

Problem 102 (NegativeWeightTriangle). Given a tripartite graph G(V1,V2,V3,E) with

|V1| = |V2| = |V3| = n and edge weights in [−na,na] for some constant a, determine if

there is a triangle such that the sum of the edge weights is negative.

• Lower Bounds: Subcubic equivalent to APSP [150]



207

Problem 103 (FirstOrderModelChecking). Given a quantified Boolean formula with

k+1 quantifiers, a universe of size n and a list representation for all relations with total

size m, determine if the formula is true.

• Upper Bounds: O(mk/2Ω(
√

logn)) [67]

• Lower Bounds: SETH-hard at time mk [142]

Problem 104 (k-DominatingSet). Given a graph G = (V,E) with |V |= n and |E|= m,

determine if there is a set S⊆V with |S|= k such that each node v in V is either in S or

adjacent to a node in S.

• Upper Bounds: O(mk/2Ω(
√

logn)), special case of FirstOrderModelChecking

• Lower Bounds: SETH-hard at time mk [123]

Problem 105 (GraphDiameter). Given a graph G = (V,E), determine the diameter, i.e.

max
u,v∈V

dist(u,v) (A.3)

• Subcubic equivalent to APSP [3].

Problem 106 (GraphDiameter-2). Given a graph G = (V,E) with |V |= n and |E|= m,

determine if if the diameter of the graph is at most 2.

• Upper Bounds: O(mk/2Ω(
√

logn)), special case of FirstOrderModelChecking

Problem 107 (GraphRadius). Given a graph G = (V,E), determine the radius, i.e.

min
c∈V

max
v∈V

dist(c,v) (A.4)

• Subcubic equivalent to APSP [3].



208

Problem 108 (GraphRadius2). Given a graph G = (V,E) with |V | = n and |E| = m,

determine if if the radius of the graph is at most 2.

• Upper Bounds: O(mk/2Ω(
√

logn)), special case of FirstOrderModelChecking

Problem 109 (k-Clique). Given a graph G = (V,E) with |V |= n, determine if there is a

set S⊆V with |S|= k such that there is an edge between any two nodes in S.

• Upper Bounds: O(nωk/3) [113]

A.5 Stable Matching Problems

In Chapter 4, we consider a number of variants of the StableMatching problem.

Problem 110 (StableMatching). Given a matching market consisting of of a set of men

M and a set of women W with |M|= |W |= n with a preference list over M for each node

in W and a preference list over W for each node in M, find a bipartite matching, such

that there is no blocking pair, i.e. a pair of unmatched nodes (m,w), such that m prefers

w over the partner in the matching, and w prefers m over the partner in the matching.

• Upper Bounds: O(n2) [62]

• Lower Bounds: Ω(n2) even in a communication complexity setting [68]

Problem 111 (AttributeMatching). The StableMatching problem where each participant

p is defined by attributes Ai(p) ∈ R for 1≤ i≤ d and weights αi(p) ∈ R for 1≤ i≤ d.

The preference list for m ∈ M is defined by the value valm(w) = ∑
d
i=1 αi(m)Ai(w) in

decreasing order. The preference lists for women is defined analogously.

• Lower Bounds: SETH-hard at time n2 for d = ω(logn), as it is a generalization

of BooleanAttributeMatching



209

Problem 112 (BoundedAttributeMatching). The AttributeMatching problem, where the

attributes and weights are restricted to be from a set of of size C.

• Upper Bounds: O(C2dn(d + logn))

• Lower Bounds: SETH-hard at time n2 for d = ω(logn), as it is a generalization

of BooleanAttributeMatching

Problem 113 (BooleanAttributeMatching). The AttributeMatching problem, where the

attributes and weights are restricted to 0 or 1.

• Upper Bounds: O(22dn(d + logn)), special case of BooleanAttributeMatching

• Lower Bounds: SETH-hard at time n2 for d = ω(logn)

Problem 114 (OneSidedAttributeMatching). The AttributeMatching problem, where

the preference lists for one side are defined by d attributes, and the preferences for the

other side are defined by a single attribute.

• Upper Bounds: Õ(n2−1/bd/2c)

Problem 115 (ListMatching). The StableMatching problem with at most d distinct pref-

erence lists per side.

Problem 116 (SinglePeakedMatching). The StableMatching problem where the pref-

erence lists are single-peaked. We say the men’s preferences over the women in a

matching market are single-peaked if the women can be ordered as points along a line

(p(w1)< p(w2)< · · ·< p(wn)) and for each man m there is a point q(m) and a binary

preference relation �m such that if p(wi)≤ q(m) then p(wi)�m p(w j) for j < i and if

p(wi)≥ q(m) then p(wi)�m p(w j) for j > i.

• Upper Bounds: O(n2)



210

Problem 117 (GeometricMatching). We say the men’s preferences over the women in

a matching market are geometric in d dimensions if each women w is defined by a

location p(w) and for each man m there is an ideal q(m) such that m prefers woman

w1 to w2 if and only if ‖p(m)− q(w1)‖2
2 < ‖p(m)− q(w2)‖2

2, i.e. p(w1) has smaller

euclidean distance from the man’s ideal than p(w2). The GeometricMatching problem is

the StableMatching problem where both all preferences are geometric.

• Equivalent to AttributeMatching, see Section 4.6.2 for results on variants of this

problem

Problem 118 (VerifyStableMatching). Given a matching market as well as a bipartite

matching, decide if the matching is a stable matching.

• Upper Bounds: O(n2)

• Lower Bounds: Ω(n2) even in a communication complexity setting [68]

Problem 119 (VerifyAttributeMatching). Verification problem of AttributeMatching

• Upper Bounds: Õ(n2−1/2d)

• Lower Bounds: SETH-hard at time n2 for d = ω(logn), as it is a generalization

of VerifyBooleanAttributeMatching

Problem 120 (VerifyBooleanAttributeMatching). Verification for a matching market in

the Boolean attribute model.

• Upper Bounds: Õ(n2−1/O(c log2(c))) for d = c logn

• Lower Bounds: SETH-hard at time n2 for d = ω(logn)

Problem 121 (VerifyListMatching). Verification problem of ListMatching



211

• Upper Bounds: O(dn)

Problem 122 (VerifySinglePeakedMatching). Verification for a single-peaked matching

market

• Upper Bounds: O(n logn)

Problem 123 (StablePair). Given a matching market and a pair (m,w), decide if the

pair is matched in any stable matching.

• Upper Bounds: O(n2) [87, 70]

• Lower Bounds: Ω(n2) even in a communication complexity setting [68]

Problem 124 (BooleanAttributeStablePair). The StablePair problem with Boolean at-

tributes and weights.

• Lower Bounds: SETH-hard at time n2 for d = ω(logn)

A.6 Other Problems

Problem 125 ((min,+)-Convolution). Given n-dimensional vectors a = (a0, . . . ,an−1),

b = (b0, . . . ,bn−1) ∈ [−W,W ]n for some W = poly(n), the (min,+)-Convolution a∗b is

defined by

(a∗b)k = min
0≤i, j<n:i+ j=k

ai +b j for all 0≤ k ≤ 2n−2.

• Upper Bounds: O(n2)



212

Problem 126 (Convolution). Given two n-dimensional vectors a = (a0, . . . ,an−1), b =

(b0, . . . ,bn−1) ∈ [−W,W ]n for some W = poly(n), the convolution a~b is defined by

(a~b)k = ∑
0≤i, j<n:i+ j=k

ai ·b j for all 0≤ k ≤ 2n−2.

• Upper Bounds: O(n logn)

Problem 127 (Selection). Let D be a set of objects, and let D1,D2 ⊆ Dn. Given two

sequences of inputs (a1, . . . ,an) ∈ D1 and (b1, . . . ,bn) ∈ D2 and a relation R ⊆ D×D,

determine if there is i, j satisfying R(ai,b j). We denote this selection problem with respect

to a relation R and sets D1,D2 by Selection(RD1,D2). If D1 = D2 = Dn, we denote the

problem by Selection(R).

• Upper Bounds: O(n2)

Problem 128 (Sorting). Given n real numbers, find the permutation x1, . . . ,xn such that

x1 ≤ ·· · ≤ xn.

• Upper Bounds: O(n logn)

Problem 129 (ChainSet). Let {x0, . . . ,xn} be a set of data items, weights w1, . . . ,wn−1 ∈

[−W,W ] and a relation R(xi,x j) be given. The chain set problem for R, denoted

ChainSet(R) asks to find the sequence i0, i1, i2, . . . , ik such that for all j with 1 ≤ j ≤ k

the pair (xi j−1,xi j) is in the relation R and the weight ∑
k−1
j=1 wi j is minimized.

• Lower Bounds: NP-complete

Problem 130 (HittingSet). Given two families of sets A and B with |A | = |B| = n,

decide if there exists A ∈A such that A∪B 6= /0 for all B ∈B.



213

• Upper Bounds: O(n2)

Problem 131 (SparseHittingSet). Given two families of sets A and B with

∑
A∈A
|A|+ ∑

B∈B
|B|= m

, decide if there exists A ∈A such that A∪B 6= /0 for all B ∈B.

• Upper Bounds: O(m2)

Problem 132 (k-sum). Given a set of integers A ⊆ [−W,W ]n for some W = poly(n),

determine if there is ai ∈ A for 1≤ i≤ k such that ∑
k
i=1 ai = 0.

• Upper Bounds: Õ(nd
k
2e)

• Lower Bounds: No algorithm with time O(nd
k
2e−ε) for any ε > 0 according to the

k-sum conjecture [61]

Problem 133 (Table-k-sum). Given a k sets of integers Ai ⊆ [−W,W ]n for for 1≤ i≤ k

and some W = poly(n), determine if there is ai ∈ Ai for 1≤ i≤ k such that ∑
k
i=1 ai = 0.

• Equivalent to k-sum

Problem 134 (SubsetSum). Given a set of integers A⊆ [−W,W ]n for some W = poly(n),

determine if there is A′ ⊆ A for such that ∑a∈A′ a = 0.

• Upper Bounds: Õ(2n/2)

Problem 135 (SparseSubsetSum). Given a target value t ∈ N and a set of integers

A⊆ [t]n, determine if there is A′ ⊆ A for such that ∑a∈A′ a = t.

• Upper Bounds: Õ(n+ t) [32]



214

Problem 136 (FréchetDistance). For a given n let a walk for n be a sequence 1 =

i1, . . . , im = n such that ik− ik−1 ∈ {0,1} for all k > 1.

Given two sequences of points in two dimensions a1, . . . ,an ∈R2 and b1, . . . ,bn ∈

R2, find the minimum over all walks for n i1, . . . , im and j1, . . . , jm of

m
max
k=1
||aik−b jk || (A.5)

• Upper Bounds: O(n2/polylog(n)) [10]

• Lower Bounds: SETH-hard at time n2 [31]

Problem 137 (EditDistance). Given two strings a and b with |a|= |b|= n, compute the

minimum number of deletions, insertions and substitutions to transform a into b.

• Upper Bounds: O(n2/polylog(n)) [105]

• Lower Bounds: SETH-hard at time n2 [17]

Problem 138 (LongestCommonSubsequence). Given two strings x and y of length at

most n, compute the length of the longest string z that is a subsequence of both x and y.

• Upper Bounds: O(n2/polylog(n)) [105]

• Lower Bounds: SETH-hard at time n2 [2, 33]



Bibliography

[1] Scott Aaronson, Greg Kuperberg, and Christopher Granade. Complexity zoo.
https://complexityzoo.uwaterloo.ca/Complexity Zoo.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-
time hardness of LCS and other sequence similarity measures. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on. IEEE, 2015.

[3] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic
equivalences between graph centrality problems, APSP and diameter. In Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1681–1697, 2015.

[4] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. Simulating branching programs with edit distance and friends:
Or: a polylog shaved is a lower bound made. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, pages 375–388,
New York, NY, USA, 2016. ACM.

[5] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences
of faster alignment of sequences. In Proc. 41st International Colloquium on
Automata, Languages, and Programming (ICALP’14), pages 39–51, 2014.

[6] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching
triangles and basing hardness on an extremely popular conjecture. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
’15, pages 41–50, New York, NY, USA, 2015. ACM.

[7] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the poly-
nomial method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’15), pages 218–230, 2015.

[8] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation
and fixed parameter subquadratic algorithms for radius and diameter in sparse
graphs. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete Algorithms, pages 377–391. Society for Industrial and Applied Mathe-
matics, 2016.

215

https://complexityzoo.uwaterloo.ca/Complexity_Zoo


216

[9] Pankaj K Agarwal, Lars Arge, Jeff Erickson, Paolo G Franciosa, and Jeffry Scott
Vitter. Efficient searching with linear constraints. In Proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 169–178. ACM, 1998.

[10] Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Comput-
ing the discrete fréchet distance in subquadratic time. SIAM Journal on Computing,
43(2):429–449, 2014.

[11] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.
Contemporary Mathematics, 223:1–56, 1999.

[12] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E.
Wilber. Geometric applications of a matrix-searching algorithm. Algorithmica,
2:195–208, 1987.

[13] Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the
complexity of the longest common subsequence problem. Journal of the ACM,
23(1):1–12, 1976.

[14] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representa-
tions of threshold functions and algorithmic applications. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 467–476, 2016.

[15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest
neighbors. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on. IEEE, 2015.

[16] Esther M. Arkin, Sang Won Bae, Alon Efrat, Kazuya Okamoto, Joseph S.B.
Mitchell, and Valentin Polishchuk. Geometric stable roommates. Information
Processing Letters, 109(4):219–224, 2009.

[17] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 51–58, 2015.

[18] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for
tree sparsity in nearly-linear time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2215–2229. SIAM, 2017.

[19] Ilya Baran, Erik D Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for
3sum. Algorithmica, 50(4):584–596, 2008.



217

[20] Gill Barequet and Sariel Har-Peled. Polygon containment and translational in-
hausdorff-distance between segment sets are 3sum-hard. International Journal of
Computational Geometry & Applications, 11(04):465–474, 2001.

[21] John Bartholdi and Michael A. Trick. Stable matching with preferences derived
from a psychological model. Operations Research Letters, 5(4):165–169, 1986.

[22] Christopher Beck and Russell Impagliazzo. Strong ETH holds for regular reso-
lution. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 487–494, 2013.

[23] Richard Bellman. On a routing problem. Technical report, DTIC Document, 1956.

[24] Nayantara Bhatnagar, Sam Greenberg, and Dana Randall. Sampling stable mar-
riages: why spouse-swapping won’t work. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1223–1232. Society for
Industrial and Applied Mathematics, 2008.

[25] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[26] Andreas Björklund and Thore Husfeldt. Exact graph coloring using inclusion–
exclusion. In Encyclopedia of Algorithms, pages 289–289. Springer, 2008.

[27] Anna Bogomolnaia and Jean-François Laslier. Euclidean preferences. Journal of
Mathematical Economics, 43(2):87–98, 2007.

[28] Ravi B. Boppana and Michael Sipser. Handbook of theoretical computer science
(vol. a). chapter The complexity of finite functions, pages 757–804. MIT Press,
Cambridge, MA, USA, 1990.

[29] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On
the complexity of some quadratic-time solvable problems. Electronic Notes in
Theoretical Computer Science, 322:51–67, 2016.

[30] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hur-
tado, John Iacono, Stefan Langerman, Mihai Pǎtraşcu, and Perouz Taslakian.
Necklaces, convolutions, and X+Y. Algorithmica, 69(2):294–314, 2014.

[31] Karl Bringmann. Why walking the dog takes time: Fréchet distance has no
strongly subquadratic algorithms unless seth fails. In Foundations of Computer
Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 661–670. IEEE,
2014.

[32] Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum.
In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17),
pages 1073–1084, 2017.



218

[33] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 79–97, 2015.

[34] Chris Calabro. The exponential complexity of satisfiability problems. PhD thesis,
University of California San Diego, 2009.

[35] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of
satisfiability of small depth circuits. In Parameterized and Exact Computation:
4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10-11, 2009, Revised Selected Papers, Lecture Notes in Computer Science 5917,
pages 75–85, Berlin, Heidelberg, 2009. Springer-Verlag.

[36] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamo-
han Paturi, and Stefan Schneider. Nondeterministic extensions of the strong
exponential time hypothesis and consequences for non-reducibility. In Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
pages 261–270. ACM, 2016.

[37] Timothy M Chan. All-pairs shortest paths with real weights in o (n 3/log n) time.
Algorithmica, 50(2):236–243, 2008.

[38] Timothy M Chan. Speeding up the four russians algorithm by about one more
logarithmic factor. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 212–217. Society for Industrial and Applied Mathe-
matics, 2015.

[39] Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive
combinatorics. In Proc. 47th Annual ACM Symposium on Theory of Computing,
(STOC’15), pages 31–40, 2015.

[40] Ashok K Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility.
SIAM Journal on Computing, 13(2):423–439, 1984.

[41] Prasad Chebolu, Leslie Ann Goldberg, and Russell Martin. The complexity of
approximately counting stable matchings. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 81–94. Springer,
2010.

[42] Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-
SAT and max-k-csp. In Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, pages 33–45, 2015.

[43] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower
bounds and satisfiability algorithms for small threshold circuits. In LIPIcs-Leibniz



219

International Proceedings in Informatics, volume 50. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[44] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network
coding, and expander graphs. SIAM Journal on Computing, 42(3):733–751, 2013.

[45] Kim-Sau Chung. On the existence of stable roommate matchings. Games and
economic behavior, 33(2):206–230, 2000.

[46] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua
Bar-Hillel, editor, Logic, Methodology and Philosophy of Science: Proceedings
of the 1964 International Congress (Studies in Logic and the Foundations of
Mathematics), pages 24–30. North-Holland Publishing, 1965.

[47] S.A. Cook. The complexity of theorem-proving procedures. pages 151–158, 1971.

[48] Stephen A Cook. A hierarchy for nondeterministic time complexity. Journal of
Computer and System Sciences, 7(4):343–353, 1973.

[49] M. Cygan, M. Mucha, K. Wȩgrzycki, and M. Włodarczyk. On problems equivalent
to (min,+)-convolution. ArXiv e-prints, February 2017.

[50] John Dabney and Brian C. Dean. Adaptive stable marriage algorithms. In Pro-
ceedings of the 48th Annual Southeast Regional Conference, page 35. ACM,
2010.

[51] Evgeny Dantsin and Alexander Wolpert. Max-sat for formulas with constant
clause density can be solved faster than in O(2n) time. In Armin Biere and CarlaP.
Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006,
volume 4121 of Lecture Notes in Computer Science, pages 266–276. Springer
Berlin Heidelberg, 2006.

[52] Sashka Davis and Russell Impagliazzo. Models of greedy algorithms for graph
problems. Algorithmica, 54(3):269–317, 2009.

[53] Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard J. Woeginger.
Fine-grained complexity analysis of two classic TSP variants. In Proc. 43rd Inter-
national Colloquium on Automata, Languages, and Programming (ICALP’16),
pages 5:1–5:14, 2016.

[54] David P. Dobkin and David G. Kirkpatrick. A linear algorithm for determining
the separation of convex polyhedra. Journal of Algorithms, 6(3):381–392, 1985.

[55] Jack Edmonds. Maximum matching and a polyhedron with 0, l-vertices. J. Res.
Nat. Bur. Standards B, 69(1965):125–130, 1965.



220

[56] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

[57] David Eppstein. Sequence comparison with mixed convex and concave costs. J.
Algorithms, 11(1):85–101, 1990.

[58] David A. Eppstein. Efficient algorithms for sequence analysis with concave and
convex gap costs. PhD thesis, Columbia University, 1989.

[59] Lester R Ford Jr. Network flow theory. Technical report, DTIC Document, 1956.

[60] Michael L. Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29 – 35, 1975.

[61] Anka Gajentaan and Mark H Overmars. On a class of o (n 2) problems in
computational geometry. Computational geometry, 5(3):165–185, 1995.

[62] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

[63] David Gale and Marilda Sotomayor. Ms. machiavelli and the stable matching
problem. The American Mathematical Monthly, 92(4):261–268, 1985.

[64] Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming with
applications to molecular biology. Theoretical Computer Science, 64(1):107–118,
1989.

[65] Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional
dynamic programming. Inf. Process. Lett., 33(6):309–311, 1990.

[66] Zvi Galil and Kunsoo Park. Parallel algorithms for dynamic programming recur-
rences with more than O(1) dependency. J. Parallel Distrib. Comput., 21(2):213–
222, 1994.

[67] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams.
Completeness for first-order properties on sparse structures with algorithmic
applications. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2162–2181, 2017.

[68] Yannai A. Gonczarowski, Noam Nisan, Rafail Ostrovsky, and Will Rosenbaum.
A stable marriage requires communication. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1003–1017. SIAM,
2015.



221

[69] A. Grønlund, K. Green Larsen, A. Mathiasen, J. Sindahl Nielsen, S. Schneider,
and M. Song. Fast Exact k-Means, k-Medians and Bregman Divergence Clustering
in 1D. ArXiv e-prints, January 2017.

[70] Dan Gusfield. Three fast algorithms for four problems in stable marriage. SIAM
Journal on Computing, 16(1):111–128, 1987.

[71] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure and
Algorithms. Foundations of Computing Series. Mit Press, 1989.

[72] Andras Hajnal, Wolfgang Maass, Pavel Pudlak, Mario Szegedy, and Gyorgy Turan.
Threshold circuits of bounded depth. In Proceedings of the 28th Annual Symposium
on Foundations of Computer Science, SFCS ’87, pages 99–110, Washington, DC,
USA, 1987. IEEE Computer Society.

[73] Juris Hartmanis and Richard E Stearns. On the computational complexity of
algorithms. Transactions of the American Mathematical Society, 117:285–306,
1965.

[74] Johan Hastad. Almost optimal lower bounds for small depth circuits. In Proceed-
ings of the eighteenth annual ACM symposium on Theory of computing, pages
6–20. ACM, 1986.

[75] John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot
a ray, take a walk. Journal of Algorithms, 18(3):403–431, 1995.

[76] Timon Hertli. 3-sat faster and simpler—unique-sat bounds for ppsz hold in general.
SIAM Journal on Computing, 43(2):718–729, 2014.

[77] Daniel S. Hirschberg and Lawrence L. Larmore. The least weight subsequence
problem. SIAM Journal on Computing, 16(4):628–638, 1987.

[78] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[79] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: Exponential time vs. probabilistic polynomial time. Journal of Computer
and System Sciences, 65(4):672–694, 2002.

[80] Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider.
0-1 integer linear programming with a linear number of constraints. arXiv preprint
arXiv:1401.5512, 2014.

[81] Russell Impagliazzo, Williams Matthews, and Ramamohan Paturi. A Satisfiability
Algorithm for AC0. pages 961–972, 2012.



222

[82] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal
of Computer and System Sciences, 62(2):367 – 375, 2001.

[83] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size–depth trade-
offs for threshold circuits. SIAM J. Comput., 26(3):693–707, 1997. preliminary
version published in STOC 1993.

[84] Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability
algorithm for sparse depth two threshold circuits. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 479–488. IEEE,
2013.

[85] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems
have strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[86] Robert W. Irving. An efficient algorithm for the “stable roommates” problem.
Journal of Algorithms, 6(4):577–595, 1985.

[87] Robert W. Irving and Paul Leather. The complexity of counting stable marriages.
SIAM Journal on Computing, 15(3):655–667, 1986.

[88] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths
in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[89] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 749–760, 2015.

[90] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[91] Henry A Kautz and Bart Selman. Planning as satisfiability. In ECAI, volume 92,
pages 359–363. Citeseer, 1992.

[92] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An
almost-linear-time algorithm for approximate max flow in undirected graphs, and
its multicommodity generalizations. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 217–226. SIAM,
2014.

[93] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for
weighted bipartite matching and stable marriages. Theoretical Computer Science,
127(2):255–267, 1994.

[94] Maria M. Klawe and Daniel J. Kleitman. An almost linear time algorithm for
generalized matrix searching. SIAM J. Discrete Math., 3(1):81–97, 1990.



223

[95] Morton Klein. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science, 14(3):205–220,
1967.

[96] Donald E. Knuth. Stable marriage and its relation to other combinatorial problems:
An introduction to the mathematical analysis of algorithms, volume 10. Amer
Mathematical Society, 1997.

[97] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Softw.,
Pract. Exper., 11(11):1119–1184, 1981.

[98] Hirotatsu Kobayashi and Tomomi Matsui. Cheating strategies for the gale-shapley
algorithm with complete preference lists. Algorithmica, 58(1):151–169, 2010.

[99] Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for
subset sum. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
(SODA’17), pages 1062–1072, 2017.

[100] Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs
max-flow. CoRR, abs/1702.05805, 2017.

[101] Marvin Künnemann, Daniel Moeller, Ramamohan Paturi, and Stefan Schneider.
Subquadratic algorithms for succinct stable matching. CoRR, abs/1510.06452v5,
2016.

[102] L. Levin. Universal sorting problems. Problems of Information Transmission,
9:265–266, 1973.

[103] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

[104] Inês Lynce and João Marques-Silva. Efficient haplotype inference with boolean
satisfiability. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 104. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2006.

[105] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

[106] Jiřı́ Matoušek. Efficient partition trees. Discrete & Computational Geometry,
8(1):315–334, 1992.

[107] Jiřı́ Matoušek and Otfried Schwarzkopf. Linear optimization queries. In Proceed-
ings of the eighth annual symposium on Computational geometry, pages 16–25.
ACM, 1992.



224

[108] Silvio Micali and Vijay V Vazirani. An o (v— v— c— e—) algoithm for finding
maximum matching in general graphs. In Foundations of Computer Science, 1980.,
21st Annual Symposium on, pages 17–27. IEEE, 1980.

[109] Webb Miller and Eugene W. Myers. Sequence comparison with concave weighting
functions. Bulletin of Mathematical Biology, 50(2):97–120, 1988.

[110] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algo-
rithms for succinct stable matching. In International Computer Science Symposium
in Russia, pages 294–308. Springer, 2016.

[111] Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n
steps. Discrete Applied Mathematics, 10(3):287–295, 1985.

[112] Saburo Muroga, Iwao Toda, and Satoru Takasu. Theory of majority decision
elements. Journal of the Franklin Institute, 271(5):376–418, 1961.

[113] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,
1985.

[114] Cheng Ng and Daniel S. Hirschberg. Lower bounds for the stable marriage
problem and its variants. SIAM Journal on Computing, 19(1):71–77, 1990.

[115] James B Orlin. A faster strongly polynomial minimum cost flow algorithm.
Operations research, 41(2):338–350, 1993.

[116] James B Orlin. Max flows in o(nm) time, or better. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 765–774. ACM, 2013.

[117] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364,
2005.

[118] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
In Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium
on, pages 566–574. IEEE, 1997.

[119] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-time parameterized algorithm for steiner tree on planar graphs.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 20. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[120] David Pisinger. Dynamic programming on the word RAM. Algorithmica,
35(2):128–145, 2003.



225

[121] Pavel Pudlak and Russell Impagliazzo. A lower bound for dll algorithms for
k-sat. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2000, San Francisco, CA, USA, January 9-11, 2000, pages
128–136, 2000.

[122] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In
Proceedings of the forty-second ACM symposium on Theory of computing, pages
603–610. ACM, 2010.

[123] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster SAT algorithms.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–
1075, 2010.

[124] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

[125] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011.

[126] Alvin E. Roth. The economics of matching: Stability and incentives. Mathematics
of operations research, 7(4):617–628, 1982.

[127] Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-sided Matching: A Study
in Game - Theoretic Modeling and Analysis. Econometric Society Monographs.
Cambridge University, 1990.

[128] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula
and qbf satisfiability. In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, FOCS ’10, pages 183–192, Washington, DC,
USA, 2010. IEEE Computer Society.

[129] Stefan Schneider. Satisfiability algorithms for restricted circuit classes. CoRR,
abs/1306.4029, 2013.

[130] Uwe Schöning. A probabilistic algorithm for k-sat based on limited local search
and restart. Algorithmica, 32(4):615–623, 2002.

[131] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive
normal form. Journal of Algorithms, 54(1):40–44, 2005.

[132] Ilya Segal. The communication requirements of social choice rules and supporting
budget sets. Journal of Economic Theory, 136(1):341–378, 2007.

[133] Joel I Seiferas, Michael J Fischer, and Albert R Meyer. Separating nondeterministic
time complexity classes. Journal of the ACM (JACM), 25(1):146–167, 1978.



226

[134] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of mathe-
matical economics, 1(1):23–37, 1974.

[135] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 77–82. ACM, 1987.

[136] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-
quadratic number of symmetric and threshold gates. In Electronic Colloquium on
Computational Complexity (ECCC), volume 23, page 4, 2016.

[137] Chung-Piaw Teo, Jay Sethuraman, and Wee-Peng Tan. Gale-shapley stable mar-
riage problem revisited: Strategic issues and applications. Management Science,
47(9):1252–1267, 2001.

[138] Kenya Ueno. Exact algorithms for 0-1 integer programs with linear equality
constraints. arXiv preprint arXiv:1405.6851, 2014.

[139] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pages 455–464. ACM, 2009.

[140] Robert E. Wilber. The concave least-weight subsequence problem revisited. J.
Algorithms, 9(3):418–425, 1988.

[141] Ryan Williams. Personal communication.

[142] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theoretical Computer Science, 348(2-3):357–365, 2005.

[143] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. Comput., 42(3):1218–1244, 2013.

[144] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceed-
ings of the 46th Annual ACM Symposium on Theory of Computing, pages 664–673.
ACM, 2014.

[145] Ryan Williams. Faster decision of first-order graph properties. In Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 80:1–80:6,
2014.

[146] Ryan Williams. New algorithms and lower bounds for circuits with linear thresh-
old gates. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 194–202. ACM, 2014.



227

[147] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32,
2014.

[148] Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-interactive
proofs of batch evaluation. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 2:1–2:17, 2016.

[149] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on
popular conjectures such as the strong exponential time hypothesis (invited talk).
In LIPIcs-Leibniz International Proceedings in Informatics., volume 43, 2015.

[150] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

[151] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In
Proc. 12th Annual ACM Symposium on Theory of Computing (STOC’80), pages
429–435, 1980.


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Fine-Grained Complexity
	Notation
	Satisfiability
	Exponential Time Hypotheses
	Fine-Grained Reductions
	Sparsification Lemma
	Orthogonal Vectors and SETH
	SETH-hardness in P
	Other Hardness Conjectures
	3-Sum Conjecture
	APSP Conjecture
	Min-Plus Convolution Conjecture

	Lower Bounds from Algorithms
	Contributions

	Depth Two Threshold Circuits
	Notation and Problems
	Results and Techniques
	Vector Domination Problem
	Fan-In Separation
	Generalization to Formulas
	Generalization to Symmetric Gates
	The Algorithm
	The Algorithm as a Zero-Sum Game

	Conclusion

	Stable Matching
	Summary of Results
	Preliminaries
	Finding Stable Matchings
	Small Set of Attributes and Weights
	One-Sided Real Attributes
	Strategic Behavior

	Verification
	Real Attributes and Weights
	Lists
	Boolean Attributes and Weights

	Conditional Hardness
	Background
	Finding Stable Matchings
	Verifying Stable Matchings
	Checking a Stable Pair

	Other Succinct Preference Models
	One Dimensional Single-Peaked Preferences
	Geometric Preferences
	Strategic Behavior

	Conclusion and Open Problems

	One-Dimensional Dynamic Programming
	The Least-Weight Subsequence (LWS) Problem
	Succinct LWS instantiations
	Contributions and Results
	Related Work
	Organization

	Preliminaries
	Succinct LWS Instantiations
	Core Problems and Hypotheses
	Intermediate Problems

	Static LWS
	Low Rank LWS
	Coin Change and Knapsack Problems
	Chain LWS
	Near-linear time algorithms
	Longest Increasing Subsequence
	Unbounded Subset Sum
	Concave LWS

	Open Problems

	Fine-Grained Non-Reducibility
	Introduction
	Outline
	Definitions and basic properties
	What if NSETH is false?
	The nondeterministic time complexity of problems in P
	Maximum Flow
	Hitting Set
	Min-Cost Maximum Flow
	Maximum Matching
	3-SUM
	All-pairs shortest paths and related problems

	Characterizing the quantifier structure of SETH-hard graph problems
	Consequences for verification of solutions
	Conclusions and open problems

	Dramatis Personae
	Satisfiability Problems
	Vector Problems
	Least Weight Subsequence Problems
	Graph Problems
	Stable Matching Problems
	Other Problems

	Bibliography

